960 resultados para specific leaf area
Resumo:
Aiming to obtain empirical models for the estimation of Syrah leaf area a set of 210 fruiting shoots was randomly collected during the 2013 growing season in an adult experimental vineyard, located in Lisbon, Portugal. Samples of 30 fruiting shoots were taken periodically from the stage of inflorescences visible to veraison (7 sampling dates). At the lab, from each shoot, primary and lateral leaves were separated and numbered according to node insertion. For each leaf, the length of the central and lateral veins was recorded and then the leaf area was measured by a leaf area meter. For single leaf area estimation the best statistical models uses as explanatory variable the sum of the lengths of the two lateral leaf veins. For the estimation of leaf area per shoot it was followed the approach of Lopes & Pinto (2005), based on 3 explanatory variables: number of primary leaves and area of the largest and smallest leaves. The best statistical model for estimation of primary leaf area per shoot uses a calculated variable obtained from the average of the largest and smallest primary leaf area multiplied by the number of primary leaves. For lateral leaf area estimation another model using the same type of calculated variable is also presented. All models explain a very high proportion of variability in leaf area. Our results confirm the already reported strong importance of the three measured variables (number of leaves and area of the largest and smallest leaf) as predictors of the shoot leaf area. The proposed models can be used to accurately predict Syrah primary and secondary leaf area per shoot in any phase of the growing cycle. They are inexpensive, practical, non-destructive methods which do not require specialized staff or expensive equipment.
Resumo:
In herbaceous ecosystems worldwide, biodiversity has been negatively impacted by changed grazing regimes and nutrient enrichment. Altered disturbance regimes are thought to favour invasive species that have a high phenotypic plasticity, although most studies measure plasticity under controlled conditions in the greenhouse and then assume plasticity is an advantage in the field. Here, we compare trait plasticity between three co-occurring, C 4 perennial grass species, an invader Eragrostis curvula, and natives Eragrostis sororia and Aristida personata to grazing and fertilizer in a three-year field trial. We measured abundances and several leaf traits known to correlate with strategies used by plants to fix carbon and acquire resources, i.e. specific leaf area (SLA), leaf dry matter content (LDMC), leaf nutrient concentrations (N, C:N, P), assimilation rates (Amax) and photosynthetic nitrogen use efficiency (PNUE). In the control treatment (grazed only), trait values for SLA, leaf C:N ratios, Amax and PNUE differed significantly between the three grass species. When trait values were compared across treatments, E. curvula showed higher trait plasticity than the native grasses, and this correlated with an increase in abundance across all but the grazed/fertilized treatment. The native grasses showed little trait plasticity in response to the treatments. Aristida personata decreased significantly in the treatments where E. curvula increased, and E. sororia abundance increased possibly due to increased rainfall and not in response to treatments or invader abundance. Overall, we found that plasticity did not favour an increase in abundance of E. curvula under the grazed/fertilized treatment likely because leaf nutrient contents increased and subsequently its' palatability to consumers. E. curvula also displayed a higher resource use efficiency than the native grasses. These findings suggest resource conditions and disturbance regimes can be manipulated to disadvantage the success of even plastic exotic species.
Resumo:
Exotic and invasive woody vines are major environmental weeds of riparian areas, rainforest communities and remnant natural vegetation in coastal eastern Australia, where they smother standing vegetation, including large trees, and cause canopy collapse. We investigated, through glasshouse resource manipulative experiments, the ecophysiological traits that might facilitate faster growth, better resource acquisition and/or utilization and thus dominance of four exotic and invasive vines of South East Queensland, Australia, compared with their native counterparts. Relative growth rate was not significantly different between the two groups but water use efficiency (WUE) was higher in the native species while the converse was observed for light use efficiency (quantum efficiency, AQE) and maximum photosynthesis on a mass basis (Amax mass). The invasive species, as a group, also exhibited higher respiration load, higher light compensation point and higher specific leaf area. There were stronger correlations of leaf traits and greater structural (but not physiological) plasticity in invasive species than in their native counterparts. The scaling coefficients of resource use efficiencies (WUE, AQE and respiration efficiency) as well as those of fitness (biomass accumulated) versus many of the performance traits examined did not differ between the two species-origin groups, but there were indications of significant shifts in elevation (intercept values) and shifts along common slopes in many of these relationships – signalling differences in carbon economy (revenue returned per unit energy invested) and/or resource usage. Using ordination and based on 14 ecophysiological attributes, a fair level of separation between the two groups was achieved (51.5% explanatory power), with AQE, light compensation point, respiration load, WUE, specific leaf area and leaf area ratio, in decreasing order, being the main drivers. This study suggests similarity in trait plasticity, especially for physiological traits, but there appear to be fundamental differences in carbon economy and resource conservation between native and invasive vine species.
Resumo:
氮素是大多数陆地生态系统初级生产力的主要限制因子。由于人类的工业和农业生产活动不断加剧,导致全球性氮沉降增加,使大多数生态系统氮素的可获得性增强。从而降低或消除了氮素对生态系统的限制作用,加速了生态系统生物地球化学过程,对物种多样性和生态系统结构与功能产生了显著的影响。但由于成土母质、气候条件、地形地貌、植被组成等的差异,不同生态系统类型对氮素增加的响应也不尽相同。欧洲和北美一些发达国家地区对于草地生态系统对于全球性氮沉降增加响应进行了较全面的研究,对于分布广泛的欧亚大陆草原研究相对不足。 本文研究选择对于欧亚大陆草原较具代表性的成熟羊草草原群落及该群落的退化类型为研究对象,从1999年开始,在这两类群落中选取地形相对平缓均一,植被组成一致的地段设置了施肥小区并进行持续氮素添加实验。本文研究了成熟和退化羊草草原群落物种功能特性与土壤微生物量C、N、P对氮素添加响应。 羊草群落中6种主要植物的地上生物量、种群密度、比叶面积、叶氮和叶绿素含量对于氮素添加响应以及各指标之间相关关系的分析表明:比叶面积、基于质量的叶片含氮量和叶绿素含量、叶绿素a和叶绿素b的比值等叶片水平上物种功能特性间的相互作用,共同影响和决定了种群密度和地上生物量对氮素添加的响应。羊草通过提高比叶面积、叶片叶绿素含量和含氮量、种群密度及个体生物量等多重调节功能对氮素添加做出响应。西伯利亚羽茅主要通过提高比叶面积、单位质量叶片的叶绿素含量和含氮量,以及株丛生物量,使其在群落占据优势。大针茅和冰草在提高比叶面积、叶片叶绿素含量和含氮量的调节能力相对较低,种群密度沿氮素添加梯度显著降低。黄囊苔草只能通过提高叶片叶绿素含量和含氮量对氮素添加做出响应,其叶绿素a与叶绿素b的比值沿氮素添加梯度逐渐降低,种群密度和地上生物量也显著降低。糙隐子草的叶绿素a与叶绿素b比值沿氮素添加梯度显著降低,但由于糙隐子草具有较高的SLA,且对叶绿素、叶片含氮量的调节能力较强,氮素添加处理没有对其种群密度和地上生物量产生显著的影响。上述结果支持Tilman的光资源竞争假说和Knops等的物种替代假说。 成熟和退化羊草群落土壤微生物量、土壤有机碳、全氮、全磷、速效氮、pH以及凋落物碳、氮、磷含量的测定结果表明:(1)成熟羊草群落表层土壤微生物量碳、氮、磷含量均随氮素添加量的增加而降低;退化羊草群落表层土壤微生物量碳、氮、磷含量沿氮素梯度表现出先增加而后降低的趋势;相关分析的结果显示各群落土壤微生物量碳、氮、磷均与土壤pH呈显著的正相关。(2)微生物量碳、氮、磷含量均随土层深度的增加而下将;而对照的微生物量碳、氮、磷含量则与土壤有机质含量呈显著正相关。(3)年度间降水量差异对土壤微生物量碳、氮、磷具有较大影响。综合上述研究结果,我们认为成熟羊草群落土壤微生物生长不受氮素限制,但退化群落不同;氮素添加导致的土壤酸化作用可能是两类群落表层土壤微生物量下降的主要因素,且这种影响主要集中在0-10cm的表层土壤;表层土壤微生物量碳、氮、磷对氮素添加的响应可能还受到其它因子(如生长季降水量)的影响;深层土壤微生物量较低主要是由于土壤有机质含量较低的缘故。
Resumo:
为了探究草原植物生长策略及其对养分变化的响应,本文比较分析了克氏针茅(Stipa krylovii)、冷蒿(Artemisia frigida)和糙隐子草(Cleistogenes squarrosa)根与叶的形态特性及其对氮素添加的响应。结果表明不同植物具有不同的生长策略,糙隐子草主要采取快速获取资源的生长策略,表现为具有高的比根长和比叶面积;冷蒿则主要采取保存资源的生长策略,表现为具有较高的根组织密度和较低的比根长;克氏针茅对资源的获取和保存能力都相对较强,表现为具有较大的比根长、较小的比叶面积和中等大小的根与叶组织密度。氮素添加主要影响克氏针茅和冷蒿的根特性,随着氮素添加量的增加,克氏针茅比根长显著增加,根组织密度显著降低,说明随着氮素添加量的增多克氏针茅根系对氮素的获取能力增强,从而导致其在群落中的生物量比例显著增加。冷蒿根表面积随着氮素添加量的增多显著降低,说明随着氮素添加量的增加冷蒿根系对氮素的吸收能力下降,导致其在群落中的生物量比例随着氮素添加量的增大而减少。氮素添加没有显著地影响糙隐子草根和叶特性,它在群落中的生物量比例也没有明显规律。因此,我们研究结果证明通过植物根和叶形态特性的变化能够预测植物在群落中地位的改变。 根与叶特性之间的关系可以进一步反映植物对资源获取和保存的权衡能力,研究植物根与叶特性的内在关系有助于更全面地理解植物的生存对策,更好地预测植物对环境变化的反应。我们通过简单相关分析和典型相关分析研究了克氏针茅草原植物的根与叶特性之间的关系及其对氮素添加的响应和根与叶总体关系。简单相关分析结果表明根特性之间、叶特性之间以及根与叶特性之间均存在相关性,植物特性之间的相互关系在根与叶中是相似的,且体现了植物对资源的获取与保存的权衡关系,如根组织密度与比根长负相关,叶组织密度与比叶面积负相关等,根与叶对应指标之间没有必然的联系。施氮肥使根与叶特性之间的相关性及其强弱发生变化,表明氮素添加是影响植物根与叶特性之间关系的因素之一。典型相关分析表明不同物种根与叶关系密切程度存在差异,不同根与叶特性之间的关系对根与叶总体的关系贡献程度也有所不同。
Resumo:
由于人类活动所引起的地球大气层中温室气体的富集已导致全球地表平均温度在20世纪升高了0.6 ℃,并预测在本世纪将上升1.4-5.8 ℃。气候变暖对陆地植物和生态系统影响深远,并已成为全球变化研究的重要议题。高海拔、高纬度地带的生态系统对气候变化最敏感。而在高原和高山极端环境影响下所形成的高寒草甸生态系统极其脆弱,对由于温室效应引起的全球气候变化极其敏感,对这些变化的响应更具有超前性。 本研究以川西北高寒草甸植物群落及几种主要物种为研究对象,采用国际山地综合研究中心(ITEX)普遍所采用的增温方法-----开顶式生长室(OTC)模拟气候变暖来研究增温对高寒草甸植物群落结构、物质分配及其主要物种生长和生理的影响,以探讨高寒草甸植物响应与适应气候变暖的生物学和生态学机制。主要研究结论如下: 1、OTC的增温效果 由于地温、地表温度和气温的平均值在OTC内分别高出对照样地0.28℃、0.46℃和1.4℃,这说明本研究所采用的开顶式生长室(OTC)起到了增温的作用;同时,由于温室内与温室外接受的降水量相同,温室内由于热量条件的改善,土壤蒸发和植被的蒸腾作用增强,直接导致了OTC内土壤表层相对湿度的减少。 2、群落结构对增温的响应 由于增温时间较短,增温内外样地的物种组成并未发生改变;但增温后一定程度上改变了植物群落的小气候环境,从而导致物种间的竞争关系被破坏,种间竞争关系的破坏引起群落优势种组成发生相应的改变,在对照样地,鹅绒委陵菜、甘青老鹳草、遏蓝菜和蚤缀是占绝对优势的物种,而在OTC内,小米草、尼泊尔酸模、垂穗披碱草、发草和羊茅的重要性显著增加。 禾草和杂草由于对增温的生物学特性及其资源利用响应的不同,加之增温造成土壤含水量下降等环境因子的改变。与对照样地相比较,OTC内禾草的盖度及生物量都显著增加,而杂草的盖度和生物量则显著下降。 3、植物生长期对增温的响应 OTC内立枯和调落物的生物量在生长季末(10月份)都要小于对照样地的立枯和调落物生物量,而OTC内的地上鲜体生物量在10月份却略高于对照样地。这说明OTC内植物的衰老或死亡得以延缓,而植物的生长期得以延长。 4、群落生物量及分配对增温的响应 OTC内的地上鲜体生物量(10月份除外)和地下0-30cm的根系生物量与对照样地相比较,都出现了不同程度的减少;土壤根系的分配格局也发生了明显的改变,其中,OTC内0-10cm土层的生物量分配比例增加,而20-30cm土层生物量分配比例的减少。 5、群落碳、氮对增温的响应 增温后,OTC内植物群落地上活体和地下活根的碳浓度不同程度的高于对照样地,植物群落的碳库在OTC内也略高于对照样地;而OTC内植物群落地上活体和地下活根的氮浓度不同程度的低于对照样地,其植物群落的氮库与对照样地相比也略有下降。 6、几种主要植物的生长及物质分配对增温的响应 垂穗披碱草在增温后株高、比叶面积和地上生物量均显著地增加;尼泊尔酸模在增温后比叶面积和单株平均生物量积累显著地增加,而各组分中,增温处理使叶的生物量显著增加,而根的生物量却显著下降;鹅绒委陵菜在增温后株高、比叶面积和单株平均生物量积累显著地减少,而各组分中,增温处理使叶和茎的生物量显著减少,根的生物量却显著地增加。 尼泊尔酸模的LMR、RMR、R/S、根部碳含量、碳和氮在叶片与根部的分配比例在增温后显著地增加,而SMR、根部氮含量、碳和氮在茎部的分配比例在增温后却显著地降低;鹅绒委陵菜的RMR、R/S、碳和氮在根部的分配比例在增温后显著地增加,而SMR、LMR、碳在叶片的分配比例在增温后却显著地降低 7、几种主要植物的光合生理过程对增温的响应 增温使垂穗披碱草和尼泊尔酸模叶片中的叶绿素a、叶绿素b、总叶绿素含量显著增加;而鹅绒委陵菜叶片的叶绿素a、叶绿素b、总叶绿素含量在增温后显著减少,类胡萝卜素含量在增温后却显著增加。 增温对3种植物的气体交换产生了显著影响。其中,垂穗披碱草和尼泊尔酸模叶片的光响应曲线在增温后明显高于对照处理,A、E、gs、Pmax、、Rday、AQY和LSP显著增加,而LCP则显著降低;鹅绒委陵菜的光响应曲线在增温后则明显的低于对照处理,A、E、gs、Pmax、、Rday、AQY和LSP显著减少,而LCP则显著增加。 增温后垂穗披碱草和尼泊尔酸模叶片的Fv/Fm、Yield和qP显著增加;而鹅绒委陵菜叶片的Fv/Fm、Yield和qP则显著减少,qN却显著地增加。 8、几种主要植物的抗氧化酶系统对增温的响应 增温使垂穗披碱草和尼泊尔酸模体内抗氧化酶活性和非酶促作用有所提高,植物膜脂过氧化作用降低;鹅绒委陵菜叶片中酶促反应和非酶促反应在增温后也显著提高,但可能由于增温后的土壤干旱超过了鹅绒委陵菜叶的抗氧化保护能力,抗氧化酶活性及非酶促反应(脯氨酸、类胡萝卜素)的提高不足以完全清除干旱诱导形成的过量活性氧,因此叶片的膜脂过氧化程度仍然显著提高。 Enrichment of atmospheric greenhouse gases resulted from human activities such as fossil fuel burning and deforestation has increased global mean temperature by 0.6 ℃ in the 20th century and is predicted to increase in this century by 1.4-5.8 ℃. The global warming will have profound, long-term impacts on terrestrial plants and ecosystems. The ecoologcial consequences arising from global warming have also become the very important issuses of global change research. The terrestrial habitats of high-elevation and high-latitude ecosystems are regarded as the most sensitive to changing climate. The alpine meadow ecosystme, which resulted from the composite effects of mountain extreme climatic factors in Tibetan Plateau, is thus thought to be especially vulnerable and sensitive to global warming. In this paper, the response of plant community and several main species in the alpine meadow of Northewst Sichuan to experimemtal warming was studied by using open-top chambers (OTC). The aim of the this study was to research the warming effects on plant community structure, substance allocation, growth and physiological processes of several mian species, and to explore the biological and ecological mechanism of how the alpine meadow plants acclimate and adapt to future global warming. The results were as follows: 1. Warming effects of OTC The mean soil temperature, soil surface temperature and air temperature in OTC manipulation increased by 0.28℃、0.46℃ and 1.4℃ compared to the control during the growing season. This suggested that the OTC used in our study had increased temperature there. Meanwhile, the OTC manipulation slightly altered thermal conditions, but the same amount of precipitation was supplied to both the OTC manipulation and the control, so higher soil evaporation and plant transpiration in OTC manipulation directly lead to the decrease of soil surface water content. 2. The reponse of community structure to experimental warming The species richness was not changed by the short-term effect of OTC manipulation. However, experimental warming changed the microenvironment of plant community, therefore competitive balances among species were shift, leading to changes in species dominance. In the present study, the dominant plant species in the control plots were some forbs including Potentilla anserine, Geranium pylzowianum, Thlaspi arvense and Arenaria serpyllifolia, however, the importance value of some gramineous grasses including Elymus nutans, Deschampsia caespitosa, Festuca ovina, and some forbs including Euphrasia tatarica and Rumex acetosa significantly increased in OTC. The different biology characteristics and resource utilizations between gramineous grasses and forbs, and enhanced temperature caused change in some environment factors such as soil water content. As a result, the coverage and biomass of gramineous grasses significantly increased in OTC compared to the control, however, the coverage and biomass of forbs singnifciantly decreased in OTC compared to the control. 3. The reponse of plant growing season to experimental warming Both the standing dead and fallen litter biomass in OTC were lower than those in the control in October, and the biomass of aboveground live-vegetation in OTC was higher than that of the control. The results indicated that the senescence of plants was postponed, and the growing season was prolonged in our research. 4. The reponse of community biomass accumulation and its allocation to experimental warming Experimental warming caused the decrease of aboveground live biomass and belowground root biomass except for the aboveground live biomass in October. Experimental warming also had pronounced effects on the pattern of root biomass allocation. In the present study, the root biomass in 0-10cm soil layer increased in OTC manipulation compared to the control, however, the root biomass in the 20-30cm soil layer decreased in OTC manipulation compared to the control. 5. The reponse of community C and N content to experimental warming The C concentration and stock in aboveground live and belowground root both increased in OTC manipulation compared to the control. However, the N concentration and stock in aboveground live and belowground root both decreased in OTC manipulation compared to the control. 6. The reponse of gowth and biomass, C and N alloction of several species to experimental warming Experimental warming significantly increased the height, SLA (specific leaf area) and aboveground biomass of Elymus nutans in OTC manipulation compared to the control. The SLA and total biomass of Rumex acetosa also significantly increased in OTC manipulation compared to control, among the different components of Rumex acetosa, leaf biomass significantly increased, but root biomass significantly decreased in OTC manipulation compared to the control. However, the height, SLA and total biomass of Potentilla anserina significantly decreased in OTC manipulation compared to the control, among the different component of Potentilla anserina, leaf and stem biomass significantly decreased, but root biomass significantly increased in OTC manipulation compared to the control. The LMR (leaf mass ratio), RMR (root mass ratio), R/S (shoot/root biomass ration) and root C concentration of Rumex acetosa significantly increased in OTC manipulation compared to outside control, also, Rumex acetosa allocated relatively more C and N content to leaf and root in response to experimental warming, however, the SMR (stem mass ration) and root N concentration of Rumex acetosa significantly decreased in OTC manipulation compared to outside control, also, Rumex acetosa allocated relatively less C and N content to stem in response to experimental warming. The RMR and R/S of Potentilla anserina significantly increased in OTC manipulation compared to outside control, also, Potentilla anserina allocated relatively more C and N content to root in response to experimental warming, however, the SMR and LMR of Potentilla anserina significantly decreased in OTC manipulation compared to outside control, also, Potentilla anserina allocated relatively less C and N content to leaf in response to experimental warming. 7. The reponse of physiological processes of several species to experimental warming Experimental warming significantly increased chlorophyll a, chlorophyll b and total chlorophyll of Elymus nutans and Rumex acetosa in OTC manipulation compared to outside control. However, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid of Potentilla anserina in OTC manipulation significantly decreased compared to outside control. Experimental warming had pronounced effects on gas exchange of Elymus nutans, Rumex acetosa and Potentilla anserine. In the present study, warming markedly increased the light response curves of Elymus nutans and Rumex acetosa in OTC manipulation compared to outside control, and also singnificantly increased A (net photosynthesis rate), E (transpiration rate), gs (stomatal conductance), Pmax (maximum net photosynthetic rate), Rday (dark respiration rate), AQY (apparent quantum yield) and LSP (light saturation point), but LCP (photosynthetic light compensation) of Elymus nutans and Rumex acetosa in OTC manipulation singnificantly decreased compared to outside control. However, warming markedly decreased the light response curves of Potentilla anserina in OTC manipulation compared to outside control, and also singnificantly decreased A, E, gs, Pmax, Rday, AQY and LSP, but LCP of Potentilla anserina in OTC manipulation singnificantly increased compared to outside control. Experimental warming singnificantly increased the chlorophyll fluorescence kinetics parameters such as Fv/Fm, Yield and qP of Elymus nutans and Rumex acetosa and qN of Potentilla anserina in OTC manipulation, but Fv/Fm, Yield and qP of Potentilla anserina in OTC manipulation singnificantly decreased. 8. The reponse of antioxidative systems of several species to experimental warming Experimental warming tended to increase the activities of antioxidative enzymes and stimulate the role of non-enzymes of Elymus nutans and Rumex acetosa. As a result, MDA content of Elymus nutans and Rumex acetosa decreased. The activities of antioxidative enzymes and non-enzymes of Potentilla anserina also significantly increased in OTC manipulation, but more O2- was produced because of lower soil water content, and the O2- accumulation exceeded the defense ability of antioxidative systems and non-enzymes fuctions. As a result, MDA content of Potentilla anserine still increased in OTC manipulation compared to outside control.
Resumo:
大气CO2浓度的增加已经成为不可争议的事实。预计本世纪末大气CO2浓度将增加到约700µmol mol-1。森林年光合产量约占陆地生态系统年光合产量的70%。森林树木是一个巨大的生物碳库,约占全球陆地生物碳库的85%。森林树木对CO2的固定潜力是缓解由大气CO2浓度升高引起的未来全球气候变化问题的决定性因子之一。红桦(Betula albosinensis Burk.)是川西亚高山采伐迹地自然或人工恢复的重要树种。本研究以1a红桦幼苗为模式植物,采用人工模拟的方法,研究CO2浓度升高对不同种内竞争强度(种群水平)下红桦幼苗的生理特征、生长、干物质积累及其分配的影响,探讨在种内竞争生长条件下红桦幼苗的“光合适应机理”与生长特征,为西南亚高山森林生产力对未来全球变化的预测提供重要参考。 本研究的主要结果如下: 1)在种内竞争生长条件下红桦幼苗经过CO2浓度升高熏蒸4个月后,叶片出现“光合适应”现象。与对照相比,低种植密度(28株m-2)和高种植密度(84株m-2)条件下的红桦幼苗净光合速率(A)、气孔导度(gs)、蒸腾速率(E)、表观量子产量(AQY)和羧化速率(CE)显著降低,而水分利用效率(WUE)则显著提高。CO2浓度升高处理的红桦幼苗叶片Rubisco活性、单位叶面积N浓度、叶绿素a、叶绿素b和类胡萝卜素浓度都显著降低。但CO2浓度对红桦幼苗的叶绿素a与叶绿素b的比值没有显著影响。CO2浓度升高显著增加红桦幼苗单位叶面积的非结构性碳水化合物(TNC)浓度,结果是红桦幼苗的比叶面积(SLA,cm2 g-1)显著降低。 2)与对照相比,CO2浓度升高处理的红桦幼苗高、基径、单叶面积和侧枝的相对生长速率(R GR)显著提高,尤其在试验处理的早期。CO2浓度升高既增加单株红桦幼苗总叶片数量又增加单叶面积,结果是单株红桦幼苗的总叶面积比对照显著增加。 3)CO2浓度升高处理显著增加红桦幼苗干物质积累(尤其是细根生物量),改变了红桦幼苗生物量的分配格局。与对照相比,CO2浓度升高处理的红桦幼苗叶重比(LWR)、叶面积比(LAR)、叶根重比(Wl/Wr)和源汇重比(leaf weight to non-leaf weight ratio, Wsource/Wsink)显著下降(高种植密度的LWR除外),而根冠比(R/S)则显著增加。在两种种植密度条件下,CO2浓度升高显著增加红桦幼苗根生物量的分配比率,显著降低叶片的生物量分配比率,对主茎、侧枝以及地上生物量的分配比率不变或约有下降。 总之,长期生长在CO2浓度升高条件下的红桦幼苗光合能力下降,并伴随Rubisco活性、叶N浓度、光合色素浓度的显著降低以及TNC浓度的显著增加。支持树木光合速率下降与Rubisco活性、叶N浓度下降以及TNC浓度增加紧密相关的假设。CO2浓度升高处理红桦幼苗的早期相对生长速率大大高于对照,而后期迅速下降,说明红桦幼苗生物量的显著增加主要归功于CO2浓度升高的早期促进作用和叶面积的显著增加。CO2浓度升高显著增加红桦幼苗根系生物量和根冠比,表明红桦幼苗“额外”固定的C向根系转移。 The steady increae of atmospheric CO2 concentration([CO2])has been inevitable fact. Models predict that the atmospheric [CO2] will increase to about 700µmol mol-1 at the end of the twenty-first century. As trees constitute a majoor carbon reservoir–85% of total plant carbon is found in forest, and their ability to sequester carbon is a key determinant of future global change problems caused by increases in atmospheric CO2. In addition to the role of forests in the global carbon cycle, inceased growth could be of economic benefit, for example, offsetting deleterious effects of climatic changes. Betula albosinensis (Burk.) usually emerges as the pioneer species in initial stage and as constructive species in later stages of forest community succession of mountain forest area, and also is one of important tree species for afforestation in logged area, in southwesten China. In this experinment, Betula albosinensis seedling (one-year-old) was used as the model plant. B. albosinensis seedlings were grown under two all-day [CO2], ambient (about 350 µmol·mol-1) and elevated [CO2] (about 700 µmol·mol-1), and two planting densities of 28 plants per m2 and 84 plants per m2. The objectives were to characterize birch mature leaf photosynthesis, growth, mass accumulation and allocation responses to long-tern elevated growth [CO2] under the influences of neighbouring plants, and to assess whether elevated [CO2] regulated birch mature leaf photosynthetic capacity, in terms of leaf nitrogen concentration (leaf [N]), activity of ribulose bisphosphate carboxygenase (Rubisco), Rubisco photosynthetic efficiency, and total nonstructural carbohydrates (TNC) concentration, and also to provide a strong reference to predict the productivity of subalpine forests under the future global changes. The results are as follows: 1) B.albosinensis seedlings exposed to elevated [CO2] for 120 days, photosynthetic acclimation phenomena occurred. At two planting densities, leaves of birch seedlings grown under elevated [CO2] had lower net photosynthetic rate (A), stomatal conductance (gs), transpiration (E), apparent quantum yield (AQY) and carboxylated efficiency (CE) and higher water use efficiency (WUE), compared to those of B.albosinensis seedlings grown under ambient [CO2]. Based on the leaf area, leaf [N], Rubisco activity and photosynthetic pigments concentrations of B. albosinensis seedlings grown under elevated [CO2] were significantly lower than those grown under ambient [CO2]. The ratio of chlorophyll a to chlorophyll b concentration was not affected by elevated [CO2]. Under elevated [CO2], the TNC concentration per unit leaf area significantly increased, resulting in significant decrease in specific leaf area. Thus leaf photosynthetic capacity of B. albosinensis seedlings would perform worse under rising atmospheric [CO2] and the influences of neighbouring plants. 2) Under elevated [CO2], the relative growth rate (RGR) of B. albosinensis seedlings height, basal diameter, a leaf area and branch length significantly increased, especially at the initial stage of exposure to elevated [CO2], and a leaf area and leaf numbers per B. albosinensis seedling also significantly increased. Thus the total leaf area per B. albosinensis seedling was significantly increased under elevated [CO2]. 3) As the increase of RGR and total leaf area, biomass of B. albosinensis seedling grown elevated [CO2] was higher, compared to that of B.albosinensis seedlings grown at ambient [CO2]. Elevated [CO2] changed the biomass allocation pattern of B. albosinensis seedling. At two planting densities, B. albosinensis seedlings grown elevated [CO2] had lower leaf weight to total weight ratio (LWR), leaf area to total weight ratio (LAR) and leaf weight to non-leaf weight ratio (Wsource/Wsink), but higher root weight to shoot weight ratio (R/S), compared to those of B.albosinensis seedlings grown at ambient [CO2]. Under elevated [CO2], roots biomass to total biomass ratio was signigicantly increased, leaves biomass to total biomass ratio was significantly decreased. The main stem and branch biomass to total biomass ratio were not affected by elevated [CO2]. In conclusion, our results supported the hypothesis that the decline in photosynthetic capacity of C3 plants will appear after long-term exposure to elevated [CO2], accompanying with the significant decrease in Rubisco activity, leaf N concentration, photosynthetic pigments concentration, and significant increase in total non-structural carbohydrates concentration. Our results also have shown that the increase of biomass of B. albosinensis seedlings should be attributed to initial stimulation on RGR and total leaf area resulted from elevated [CO2]. Under elevated [CO2], the extra carbon sequestered by B.albosinensis seedlings transferred into under-ground part because of increase in root biomass and R/S.
Resumo:
海拔梯度造成的环境异质性,如崎岖的地形、复杂的植被结构以及花期延迟等可能会极大地影响到物种的形态和遗传变异格局。理解物种形态和遗传变异的海拔格局对于物种多样性的管理和保护是非常重要的。尽管植物群体遗传学是一个飞速发展的研究领域,然而与海拔相关的形态变异、遗传变异及群体间遗传差异的研究却很少。到目前为止,还不清楚遗传变异与海拔之间是否必然的相关性。 川滇高山栎是一种重要的生态和经济型树种,广泛分布于中国西南的四川、西藏、贵州和云南省的高海拔地区,在保持水土、调节气候方面起着十分重要的作用。尽管主要受阳光限制而仅分布于阳坡,但其海拔梯度范围较大,表明川滇高山栎对不同的环境具有很强的适应性。本文通过叶型及生理响应、微卫星分子标记和扩增性片段长度多态性方法,试图探索川滇高山栎叶沿海拔梯度的形态和生理响应及其沿海拔梯度的遗传变异格局,为川滇高山栎的保护和利用提供进一步的遗传学理论依据和技术指导。 对叶形、含氮量及碳同位素的试验结果表明,平均比叶面积、气孔密度、气孔长度和气孔指数等气孔参数随海拔的升高呈非线性变化。在海拔大于2800 m时,川滇高山栎的比叶面积、气孔长度和气孔指数都随海拔升高而降低,但是在海拔小于2800 m时,这些指标都随海拔的升高而增大。相对而言,单位叶面积的含氮量和碳同位素则表现出相反的变化模式。另外,比叶面积是决定碳同位素沿海拔梯度变化的最重要参数。本研究结果表明,海拔2800 m附近是川滇高山栎生长和发育的最适地带,在这里生长的植物叶片厚度更薄、气孔更大、叶碳同位素值更小。 利用六对微卫星引物对五个不同海拔川滇高山栎群体遗传多样性进行研究,结果表明,群体内表现出较高的遗传多样性,平均每位点等位基因数11.33个,平均期望杂合度达0.820。群体间差异较小,分化仅为6.6%。聚类分析也并没有显示出明显的海拔格局。然而低频率等位基因却与海拔呈显著性正相关(R2=0.97, P < 0.01),表明在高海拔处,川滇高山栎以更多的稀有基因来适应恶劣的环境条件。本试验结果表明由海拔梯度形成的选择性压力对川滇高山栎群体的遗传变异影响并不明显。 为了进一步探讨川滇高山栎群体遗传变异与海拔之间的相互关系,我们还对其进行了扩增性片段长度多态性分析。结果表明:(1)随海拔的升高(从群体WL2到群体WL5),群体内遗传变异降低,而群体间遗传差异增加;(2)低海拔群体WL1表现出最低的遗传变异性(HE = 0.181),同时与其余四个群体间呈现出最大的遗传差异性(平均FST = 0.0596);(3)在除去低海拔群体WL1后,Mantel检测表明群体间遗传距离与海拔距离之间表现出正相关性。另外,研究结果还表明,遗传变异受生境条件(过度的湿热环境)及人为干扰(火烧、砍伐和放牧)的影响,这一点至少在低海拔群体WL1上发生了作用。 通过叶形态、生理及DNA分子水平的研究,结果表明叶形态特征和碳同位素与海拔紧密相关,与海拔之间呈非线性变化,海拔2,800 m附近是川滇高山栎生长和发育的最适地带。海拔梯度在一定程度上会影响到川滇高山栎群体的遗传变异结构,但在这样一个狭窄的地理分布区域里,这种影响并不足以导致群体间较大的遗传分化。同时生境条件及人为干扰也是影响遗传变异的限制性因子,不容忽视。 Altitudinal gradients impose heterogeneous environmental conditions, such as rugged topography, a complex pattern of vegetation and flowering delay, and they likely furthermore markedly affect the morphological and genetic variation pattern of a species. Understanding altitudinal pattern of morphological and genetic variation at a species is important for the management and conservation of species diversity. Although plant population genetics is a fast growing field of research, there are only few recent investigations, which analyzed the genetic differentiation and changes of intra-population variation along altitudinal gradients. At present, it is still unclear whether there are some common patterns of morphological and genetic variation with altitude. Quercus aquifolioides Rehder & E.H. Wilson, which is an important ecological and economical endemic woody plant species, is widely distributed in the Yunnan and Sichuan provinces, Southwest China. Its large range of habitat across different altitudes implies strong adaptation to different environments, although it is mainly restricted to sunny, south facing slopes. It plays a very important role in preventing soil erosion, soil water loss and regulating climate, as well as in retaining ecological stability. In this paper, we tried to understand the altitudinal pattern of morphological and genetic variation along altitudinal gradients through the experiments of leaf morphological and physiological responses, microsatellite analysis and AFLP markers. In leaf morphological and physiological responses experiment, we measured leaf morphology, nitrogen content and carbon isotope composition (as an indicator of water use efficiency) of Q. aquifolioides along an altitudinal gradient. We found that these leaf morphological and physiological responses to altitudinal gradients were non-linear with increasing altitude. Specific leaf area, stomatal length and index increased with increasing altitude below 2,800 m, but decreased with increasing altitude above 2,800 m. In contrast, leaf nitrogen content per unit area and carbon isotope composition showed opposite change patterns. Specific leaf area seemed to be the most important parameter that determined the carbon isotope composition along the altitudinal gradient. Our results suggest that near 2,800 m in altitude could be the optimum zone for growth and development of Q. aquifolioides, and highlight the importance of the influence of altitude in research on plant physiological ecology. Genetic variation and differentiation were investigated among five natural populations of Q. aquifolioides occurring along an altitudinal gradient that varied from 2,000 to 3,600 m above sea level in the Wolong Natural Reserve of China, by analyzing variation at six microsatellite loci. The results showed that the populations were characterized by relatively high intra-population variation with the average number of alleles equaling 11.33 per locus and the average expected heterozygosity (HE) being 0.779. The amount of genetic variation varied only little among populations, which suggests that the influence of altitude factors on microsatellite variation is limited. However, there is a significantly positive correlation between altitude and the number of low-frequency alleles (R2=0.97, P < 0.01), which indicates that Q. aquifolioides from high altitudes has more unique variation, possibly enabling adaptation to severe conditions. F statistics showed the presence of a slight deficiency of heterozygosity (FIS=0.136) and a low level of differentiation among populations (FST=0.066). The result of the cluster analysis demonstrates that the grouping of populations does not correspond to the altitude of the populations. Based on the available data, it is likely that the selective forces related to altitude are not strong enough to significantly differentiate the populations of Q. aquifolioides in terms of microsatellite variation. To further elucidate genetic variation pattern of Q. aquifolioides populations under sub-alpine environments, genetic variation and differentiation were investigated along altitudinal gradients using AFLP markers. The altitudinal populations with an average altitude interval of 400 m, i.e. WL1, WL2, WL3, WL4 and WL5, correspond to the altitudes 2,000, 2,400, 2,800, 3,200 and 3,600 m, respectively. Our results were as follows: (i) decreasing genetic variation (ranging from 0.253 to 0.210) and increasing genetic differentiation with altitude were obtained from the WL2 to the WL5 population; (ii) the WL1 population showed the lowest genetic variation (HE = 0.181) and the highest genetic differentiation (average FST = 0.0596) with the other four populations; (iii) the positive correlation was obtained using Mantel tests between genetic and altitude distances except for the WL1 population. Our results suggest that altitudinal gradients may have influenced the genetic variation pattern of Q. aquifolioides populations to some extent. In addition, habitat environments (unfavorable wet and hot conditions) and human disturbances (burning, grazing and felling) were possible influencing factors, especially to the low-altitude WL1 population. The present study shows that there were close correlations between morphological features and carbon isotope composition in our data. This indicates that a coordinated plant response modified these parameters simultaneously across different altitudes. Around 2,800 m altitude there seems to be an optimum zone for growth and development of Q. aquifolioides, as indicated by thinner leaves, larger stomata and more negative d13C values. All available evidence indicates altitudinal gradients may have influenced the genetic variation pattern of Q. aquifolioides to some extent. Decreasing genetic variation and increasing genetic differentiation with altitude was obtained except for the WL1 population. And the environment of habitats and human disturbances were also contributing factors, which impact genetic variation pattern, especially to the low-altitude WL1 population.
Resumo:
植物生长和生产力受到自然界各种形式的生物和非生物胁迫因子的影响。这些胁迫包括低温、高温、盐碱、干旱、洪水、重金属、虫害、病害和紫外线辐射等等。而人类活动大大加剧了这些胁迫所带来的影响。由于人类污染而导致臭氧层衰减以及由此产生的地球表面紫外辐射增强已经成为全球气候变化的一个主要方面。UV-B胁迫,甚至当前的辐射水平,所带来的影响已经引起科学工作者的广泛关注。 为了生存和繁殖,植物不得不面临环境中各种潜在胁迫所带来的负面影响。然而,植物生活型的不可移动性决定了其逃避胁迫的局限性。因此,绝大多数植物都是通过对胁迫作出反应,通过修复或者更新组织来降低伤害。而植物应对环境变化的能力则是由其生长模式的种属特异性和本身的遗传组成所决定。在自然界,植物常常同时面临多种胁迫,这些胁迫所引发的植物反应可能具有叠加、协同或者拮抗作用。沙棘是一种具刺、具有固氮功能的多年生雌雄异株灌木,广泛分布于亚欧大陆的温带地区和亚洲亚热带的高海拔地区。在中国,沙棘常常被用作植被恢复中的先锋树种而大量栽培。本文采用沙棘作为模式植物,试图探索木本植物对低温,UV-B辐射增强以及其与干旱的复合胁迫的响应以及沙棘对这些胁迫响应是否具有种群差异性。 对来自南北两个种群的沙棘进行短日照和低温处理,检测了其在抗寒锻炼和抗寒性发育过程中存在的性别差异。结果表明,短日照和低温都分别能够诱导抗寒锻炼的发生,而两者同时存在对所有实验植株抗寒性的大小具有叠加效应。然而,短日照和低温所诱导的抗寒性在两个种群中都具有性别差异性,雄性植株比雌雄植株对短日照和低温更为敏感。同时,南北种群间也存在差异性,北方种群的植物比南方种群的植物对短日照和低温敏感,从而在短日照下抗寒锻炼的发生时间更早,低温诱导的抗寒性更大。短日照和低温诱导植物增加抗寒性的同时伴随着脱落酸的变化。脱落酸的变化因处理,种群和性别的不同而不同。这些生理反应表明不同的沙棘种群,不同的植株性别对同一环境胁迫可能存在不同的生存策略。 比较了来自高低两个海拔的沙棘种群对于干旱和UV-B辐射增强以及两者复合胁迫条件下的生理生态反应。干旱使两个种群中植株总的生物量,总叶面积,比叶面积,叶片含碳量,含磷量,木质素含量和碳氮比显著降低,使根冠比,粗根细根比和叶片脱落酸含量显著增加。干旱而非UV-B使得δ13C 值显著增加。但是,比较而言,来自高海拔的种群对干旱反应更为强烈,而来自低海拔的种群对UV-B更敏感。在UV-B辐射增强的处理下,干旱所诱导的脱落酸的积累被显著抑制。而且我们检测到在一些指标上存在显著的干旱×UV-B交互作用,如两个种群中在总生物量上,低海拔种群中在总叶面积,粗根细根比上,高海拔种群中在比叶面积,δ13C值,木质素含量上都存在明显的交互作用。这些结果表明这两个种群对胁迫具有不同的适应性反应,来自高海拔的种群比来自低海拔的种群更能够抵御干旱和UV-B胁迫。 室外实验表明,UV-B 去除/增补对沙棘高低两个海拔种群的影响都不大。对生物量的积累,植株高度以及一些常见的胁迫反应生理指标比如丙二醛、ABA 和游离脯氨酸都没有显著影响。UV-B 的效应比UV-A 大,植物反应在无UV 和仅有UV-A 的处理间没有什么区别。然而,UV-B 去除的两个处理和UV-B 存在的两个处理间存在显著区别。UV-B 使得两个种群都显著降低了比叶面积(SLA),但却使长期用水效率增加。但UV-B对光合色素和光合系统II 的影响不大。总体看来,来自低海拔的种群对UV-B 更为敏感。 Plant is adversely affected by various abiotic and biotic stress factors. These stressors includelow temperature, heat, salt, drought, flooding, heavy metal toxicity, wounding by herbivores,infecting by pathogenic microorganisms, ultraviolet (UV) radiation and so on. Variousanthropogenic activities have accentuated the existing stress factors. One of the mostimportant aspects of global change is that of stratospheric ozone depletion caused by seriousanthropogenic pollution and the resulting increase in UV radiation reaching the surface of theEarth. Scientists have become concerned about the effects that considerable UV-B stress, evenat current levels. In order to survive and reproduce, plants have to be able to cope with lots of potentiallyharmful stress factors that are almost constantly present in their environment. Most plants’responses under stress are to neutralize the stress, repairing the damage or regrowing newtissue rather than to avoid it due to their sessile life style. The plant defense capacity dependson plant-specific modular growth patterns and genetic make-up that allows for flexibleresponses to changing environments. Plants usually encounter several stresses simultaneouslyunder field conditions, and the stresses may cause a variety of plant responses, which can beadditive, synergistic or antagonistic. Sea buckthorn (Hippophae rhamnoides L.), a thorny nitrogen fixing deciduously perennialshrub, which is widely distributed throughout the temperate zones of Asia and Europe and thesubtropical zones of Asia at high altitudes. It has been widely used in forest restoration as thepioneer species in China. In this paper, we used sea buckthorn as a model, tried to get some understand of how plants fight low temperature, enhanced UV-B radiation level and thatcombination of drought. And also, want to know whether does there exist some populationspecific responses to such stressors. Sexual differences in cold acclimation and freezing tolerance development of two contrastingsea buckthorn (Hippophae rhamnoides L.) ecotypes from northern and southern regions inChina were recorded after exposure to short day photoperiod (SD) and low temperature (LT).The results demonstrated that cold acclimation could be triggered by exposing the plants toSD or LT alone, and that a combination of both treatments had an additive effect on freezingtolerance in all plants tested. However, development of freezing tolerance was dependent onthe sex of plants under SD and LT, the males were clearly more responsive to SD and LT thanthe females in both ecotypes studied. On the other hand, development of freezing tolerancewas also ecotype-dependent, the northern ecotype was more responsive to SD and LT than thesouthern ecotype, resulting in earlier cold acclimation under SD and higher freezing toleranceunder LT. Moreover, development of freezing tolerance induced by SD and LT wasaccompanied by changes in ABA levels. These alterations in ABA levels were different indifferent treatments, ecotypes and sexes. Therefore, the differences in SD and LT-inducedphysiological responses showed that the different ecotypes and the different sexes mightemploy different survival strategies under environmental stress. Two contrasting populations from the low and high altitudinal regions were employed toinvestigate the effects of drought, UV-B and their combination on sea buckthorn. Droughtsignificantly decreased total biomass, total leaf area, specific leaf area,leaf carbon (C),phophous (P), lignin content and the ratio of C: N in both populations, and increasedroot/shoot ratio, fine root/coarse root ratio and abscisic acid content (ABA), in bothpopulations. Drought but not UV-B resulted in significantly greater carbon isotopecomposition (δ13C) values in both populations. However, the high altitudinal population wasmore responsive to drought than the low altitudinal population. The drought-inducedenhancement of ABA in the high altitudinal population was significantly suppressed in thecombination of drought and elevated UV-B. Moreover, significant drought × UV-B interactionwas detected on total biomass in both populations, total leaf area and fine root/coarse root inthe low altitudinal population, specific leaf area, δ13C value and leaf lignin content in the high altitudinal population. These results demonstrated that there were different adaptive responsesbetween two contrasting populations, the high altitudinal population exhibited highertolerance to drought and UV-B than the low altitudinal population. A field experiment was conducted to investigate effects of UV-B exclusion/supplementationon two altitudinal populations of sea buckthorn. UV-B exclusion or supplementation had littleeffects on both populations investigated. For instance, the total biomass, plant height andsome physiological index such as Malondialdehyde (MDA), ABA and free proline were notchanged significantly. The UV-B effects are more significant than that of UV-A, nodifferences were found between treatments of excluded UV and excluded UV-B. However,compared with treatments of UV-B exclusion (including absent of UV-B and all UV band),the present of UV-B (including near ambient environment and enhanced UV-B) significantdecreased specific leaf area, and increased long time water use efficiency as evaluated by δ13Cvalue. UV-B had little effects on photosynthetic pigments and Photosystem II (PSII). The lowaltitude population is more sensitive to UV-B than that of the high altitude population.
Resumo:
随着全球气候变暖和温室效应加剧,干旱和荒漠化成为威胁人类生存和发展的主要 灾害,许多被子植物对干旱胁迫的生理、生态和生化响应已逐步得以报道,但很少有开 展干旱胁迫对雌雄异株植物的影响方面的研究。由于这类植物在长期进化过程中已经在 生长、性比、生殖格局、空间分布、资源配置和生物量分配等方面形成了明显的性别差 异,因此,干旱胁迫必将对其雌雄植株产生不同的生理生态影响。本研究以青杨为模式 植物,采用植物生态、生理及生物化学等研究方法,系统研究青杨雌雄植株在常温、增 温以及喷施外源脱落酸的条件下对干旱胁迫的响应,揭示其在生长形态、生物量分配、 光合作用、用水效率和生理生化等方面的性别间差异。主要研究结果如下: 1. 青杨雌雄植株对干旱胁迫的综合响应。 与较好水分条件相比,干旱胁迫显著降低了青杨雌雄植株的光合作用和生长发育, 影响了许多生理生化过程,并导致雌雄植株在生长发育、气体交换、用水效率、膜脂抗 氧化和抗氧化系统酶活性方面表现出显著的性别间差异。在较好水分条件下,雌雄植株 之间在株高、基径、生物量、净光合速率、蒸腾速率、用水效率以及丙二醛、脱落酸和 游离脯氨酸等生化物质含量方面均无显著差异。但在干旱胁迫下,雄株在生长发育、气 体交换、水分利用效率、膜脂过氧化保护和抗氧化系统酶活性方面均显著高于雌株,表 现出比雌株更高的株高、基径、叶面积、总叶片数、总生物量、总色素含量、类胡萝卜 素含量、净光合速率、蒸腾速率、羧化效率、光系统II最大光化学效率、内在水分利用 效率、碳同位素组分、过氧化氢酶和过氧化物酶活性等,而在CO2补偿点、比叶面积、 叶绿素a/b、丙二醛、脱落酸和超氧化物歧化酶活性等指标上显著低于雌株。与雌株相比, 雄株表现出更高的干旱胁迫适应能力,而雌株的生长发育和生理生化过程更易遭受干旱 胁迫的影响。 2. 干旱胁迫下的青杨雌雄植株对增温处理的综合响应 与环境温度相比,增温在干旱胁迫前后均显著促进了雌雄植株的生长发育、气体交 换,降低水分利用效率,影响生化物质含量,并促使青杨雌雄植株之间在干旱胁迫下表 现出显著的差异。在较好水分条件下,增温导致雌株的株高、基径、叶面积、总叶片数、 总生物量和超氧化物歧化酶活性显著高于雄株,而用水效率、丙二醛、脱落酸和游离脯 氨酸、抗坏血酸过氧化物酶和过氧化物酶活性低于雄株。在干旱胁迫下,增温将导致雄 株的株高、基径、叶面积、总生物量、净光合速率、蒸腾速率、气孔导度、总色素含量、 相对含水量、过氧化氢酶和抗坏血酸过氧化物酶活性等显著高于雌株,而光系统II 最大 光化学效率、内在水分利用效率、碳同位素组分、丙二醛、脱落酸、游离脯氨酸和超氧 化物歧化酶活性显著低于雌株。与雄株相比,水分较好条件下的增温有利于促进雌株的 生长发育,并在生理生态特征上优于雄株。而干旱胁迫下的增温则加剧了水分胁迫强度, 致使雌株的生长发育遭受比雄株更多的负面影响。 3. 干旱胁迫下的青杨雌雄植株对喷施外源脱落酸处理的综合响应 与对照相比,在干旱胁迫下喷施外源脱落酸可显著增加青杨雌雄植株的生长发育、 气体交换、降低水分利用效率,影响了生化物质含量,并导致青杨雌雄植株之间在干旱 胁迫下表现出显著的生理生态差异。在干旱胁迫下,喷施外源脱落酸致使雌株的株高、 叶面积、叶干重、细根干重、总生物量、净光合速率、蒸腾速率、气孔导度、光系统II 最大光化学效率、非光化学淬灭系数、相对含水量、总光合色素、类胡萝卜素、脱落酸、 超氧化物歧化酶和过氧化物酶活性的增加量显著高于雄株,而根重比、根冠比、细根/ 总根、比叶面积、内在水分利用效率、碳同位素组分、丙二醛、脯氨酸、过氧化氢酶和 抗坏血酸过氧化物酶活性等指标的减少量上显著低于雄株。与对照相比,干旱胁迫下的 喷施外源脱落酸则一定程度能减缓植株遭受胁迫的压力,促进植株生长和气体交换,减 少了植株体内的过剩自由基数量,并促使雌株的生长发育和光合能力显著提高,增强其 抗干旱胁迫能力。 With development of global warming and greenhouse effect, drought and desertification have been became main natural disasteres in resent years. Studies on ecophysiological responses of most angiosperm species to environmental stress have been reported, but little is known about dioecious plant responses to drought stress. Since significant differences on growth, survival, reproductive patterns, spatial distribution, as well as resource allocation between males and females of dioecious plant have been formed during evolutionary process, sexual different ecophysiological responses should be caused by drought stress. In this experiment, Populus cathayana Rehd. was used as model plant to study the sex-related responses to drought by using the ecological, physiological and biochemical methods under normal atmospheric temperature, elevated temperatures and exogenous abscisic acid (ABA) application treatment respectively, and to expose the sexual differences in growth, biomass allocation, photosynthesis, water use efficiency and some biochemical material contents in the males and females of dioecious plant. The results are follows: 1. A large set of parallel responses of males and females of P. cathayana to drought stress Compared with well-watered treatment, drought significantly decreased growth and photosynthesis of P. cathayana individuals, affected some physiological and biochemical processes, and induced males and females to exhibit obvious sexual differences in growth, gas exchange, water use efficiency, lipid peroxidation protection and antioxidant defenses enzyme system. Under well-watered treatment, there were no significant sexual differences in height growth (HG), basal diameter (BD), dry matter accumulation (DMA), net photosynthesis rate (A), transpiration (E), water use efficiency (WUE), and malondialdehyde (MDA), abscisic acid (ABA) and praline (Pro). However, under drought stress, males were found to exhibit higher HG, BD, leaf area (LA), total leaf number (TLA), DMA, total chlorophyll contents (TC), carotenoids content (Caro), A, E, carboxylation efficiency (CE), the maximum efficiency of PSII (Fv/Fm), intrinsic water use efficiency (WUE ), carbon isotope composition (δ13C), catalase (CAT), peroxidase (POD) and lower CO2 compensation point (Γ), specific leaf area (SLA), chlorophyll a/b ratio (Chla/Chlb), MDA, ABA and superoxide dismutase (SOD) than females. The results suggest that males possess greater drought resistance than do females and females suffer more negative effect on growth and development, physiological and biochemical processes than males under drought stress. 2. A large set of parallel responses of drought-stressed males and females of P. cathayana to elevated temperatures Compared with environmental temperature, elevated temperature treatment significant increased growth and gas exchange, decreased water use efficiency, changed some biochemical material contents of P. cathayana individuals, and induced males and females to exhibit obvious differences under drought stress. Under good water condition, elevated temperature treatment caused females to show significant higher HG, BD, LA, TLN, DMA, SOD activity, and great lower WUE, MDA, ABA, Pro, ascorbate peroxidase (APX) and POD than do males. On contrary, under drought condition, elevated temperature treatment induced males to exhibit higher HG, BD, LA, DMA, A, E, stomatal conductance (gs), relative water content (RWC), CAT, APX activity but lower Fv/Fm, WUE, δ13C, MDA, ABA, Pro, SOD activity than do females. The results suggest that females will benefit from elevating temperature under good water condition by possessing better ecophysiological processes than that of males, but will suffer from greater negative effects than do males when grown under drought stress with elevated temperature treatment. 3. A large set of parallel responses of drought-stressed males and females of P. cathayana to exogenous ABA application Compared with controls, exogenous ABA application under drought greatly increased growth and gas exchange, decreased water use efficiency, changed some biochemical material contents in P. cathayana individuals, and induced males and females to exhibit obvious sexual differences under drought. Under drought stress, exogenous ABA application induced females to exhibit more increases in HG, LA, leaf weight (LW), fine root weight (FRW), DMA, A, E, g, Fv/Fm, non-photochemical quenching coefficient (qN), RWC, TC, Caro, ABA, SOD, POD s activity than males, but to show lower decreases in root/weight ratio (RWR), root mass/foliage area ratio (RF), fine root/total root ratio (FT), SLA, WUE, δ13C, MDA, Pro, CAT, APX than males. The results suggest that exogenous ABA application under drought stress will eliminate negative damages caused by drought stress at a certain extent,promote the growth and gas exchange of plant and decrease the number of superfluous 1O2 in plant cells of males and females of P. cathayana. Furthermore, exogenous ABA application promoted more drought resistance in females than in males by increasing more growth and photosynthetic capacity in females under drought stress.
Resumo:
干旱环境常常由于多变的降水事件和贫瘠土壤的综合作用,表现出较低的生产力和较低的植被覆盖度。全球性的气候变暖和人类干扰必将使得干旱地区缺水现状越来越严竣。贫瘠土壤环境中已经很低的有效养分含量也将会随着干旱的扩大而越来越低。干旱与半干旱系统中不断加剧的水分与养分的缺失将严重限制植物的生长和植被的更新,必然会使得已经恶化的环境恶化速率的加快、恶化范围的加大。如何抑制这种趋势,逐步改善已经恶化的环境是现在和将来干旱系统管理者面临的主要关键问题。了解干旱系统本土植物对未来气候变化的适应机制,不仅是植物生态学研究的重要内容,也对人为调节干旱环境,改善干旱系统植被条件,提高植被覆盖度具有重要的实践意义。 本研究以干旱河谷优势灌木白刺花(Sophora davidii)为研究对象,通过两年大棚水分和施N控制实验和一个生长季野外施N半控制实验,从植物生长-生理-资源利用以及植物生长土壤环境特征入手,系统的研究了白刺花幼苗生长特性对干旱胁迫和施N的响应与适应机制,并试图探讨施N是否可调节干旱系统土壤环境,人工促进干旱条件下幼苗定居,最终贡献于促进植被更新实践。初步研究结论如下: 1)白刺花幼苗生长、生物量积累与分配以及水分利用效率对干旱胁迫和施N处理的适应白刺花幼苗株高、基径、叶片数目、叶面积、根长、生物量生产、相对含水量和水分利用效率随着干旱胁迫程度的增加而明显降低,但地下部分生物量比例和R/S随着干旱胁迫程度的增加而增加。轻度施N处理下幼苗株高、基径、叶片数目、叶片面积和生物量生产有所增加。但重度施N处理下这些生长指标表现出微弱甚至降低的趋势。严重干旱胁迫条件下,幼苗叶面积率、R/S、相对含水量和水分利用效率也以轻度施N处理为最高。 2)白刺花幼苗叶片光合生理特征对干旱胁迫和施N处理的适应叶片光合色素含量和叶片光合效率随着干旱胁迫程度的增加而显著降低,并且PS2系统在干旱胁迫条件下表现出一定程度的光损害。但是比叶面积随着干旱胁迫程度的增加而增加。在相对较好水分条件下幼苗净光合速率的降低可能是因为气孔限制作用,而严重干旱胁迫条件下非气孔限制可能是导致幼苗叶片光合速率下降的主要原因。叶片叶绿素含量、潜在光合能力、羧化效率、光合效率以及RUBP再生能力等在施N处理下得到提高,并因而改善干旱胁迫条件下光合能力和效率。虽然各荧光参数对施N处理并无显著的反应,但是干旱胁迫条件下qN和Fv/Fm在轻度施N处理下维持相对较高的水平,而两年连续处理后在严重干旱胁迫条件下幼苗叶片光合效率受到重度施N处理的抑制,并且Fv/Fm和qN也在重度施N处理下降低。 3)白刺花幼苗C、N和P积累以及N、P利用效率对干旱胁迫和施N处理的适应白刺花幼苗C、N和P的积累,P利用效率以及N和P吸收效率随干旱胁迫程度的增加而显著降低,C、N和P的分配格局也随之改变。在相同水分处理下,C、N和P的积累量、P利用效率以及N和P吸收效率在轻度施N处理下表现为较高的水平。然而,C、N和P的积累量和P利用效率在重度施N处理下不仅没有表现出显著的正效应,而且有降低的趋势。另外,在相同水分条件下白刺花幼苗N利用效率随着施N强度的增加而降低。 4)白刺花幼苗生长土壤化学与微生物特性对干旱胁迫和施N的适应白刺花幼苗生长土壤有机C、有效N和P含量也随干旱胁迫程度的增加而明显降低。干旱胁迫条件下土壤C/N、C/P、转化酶、脲酶和碱性磷酸酶活性的降低可能表明较低的N和P矿化速率。尽管微生物生物量C、N和P对一个生长季干旱胁迫处理无显著反应,但微生物生物量C和N在两年连续干旱胁迫后显著降低。土壤有机C和有效P含量在轻度施N处理下大于重度施N处理,但是有效N含量随着施N强度的增加而增加。微生物生物量C和N、碱性磷酸酶和转化酶活性也在轻度施N处理下有所增加。但是碱性磷酸酶活性在重度施N处理下降低。 5)野外条件下白刺花幼苗生长特征及生长土壤生化特性对施N的适应植物生长、生物生产量、C的固定、N、P等资源的吸收和积累、其它受限资源的利用效率(如P)在轻度施N处理下均有所增加,但N利用效率有所降低。幼苗生物生产量及C、N和P等资源的分配格局在轻度施N处理下也没有明显的改变。白刺花幼苗叶片数目、生物生产量和C、N、P的积累量在重度施N处理下虽然也相对于对照有所增加,但幼苗根系长度显著降低。生物量及资源(生物量、C、N、P)在重度施N处理下较多地分配给地上部分(主要是叶片)。另外,土壤有机C、全N和有效N含量随外源施N的增加而显著增加,土壤pH随之降低,但土壤全P含量并无显著反应。其中有机C含量和有效P含量以轻度施N处理最高。微生物生物量C、N和P在轻度施N处理下也显著增加,而微生物生物量C在重度施N处理下显著降低。同时,转化酶、脲酶、碱性磷酸酶和中性磷酸酶活性在施N处理下也明显的提高,但酸性磷酸酶和过氧化氢酶活性显著降低,其中碱性磷酸酶和中性磷酸酶活性以轻度施N处理最高。 综合分析表明,干旱河谷水分和N严重限制了白刺花幼苗的生长。施N不能完全改变干旱胁迫对白刺花幼苗的抑制的作用,但是由于施N增加土壤N有效性,改善土壤一系列生物与化学过程,幼苗的生长特性也对施N表现出强烈的反应,表现为植物结构与资源分配格局的改善,植物叶片光合能力与效率的提高,植物生长以及利用其他受限资源(如水分和P)的效率的增加,致使植物自身生长及其生长环境在干旱环境下得到改善。但是过度施N不仅不能起到改善干旱胁迫下植物生长环境、促进植物生长的作用,反而在土壤过程以及植物生长过程中加重干旱胁迫对植物的伤害。因此,建议在采用白刺花作为先锋种改善干旱河谷系统环境的实践中,可适当施加N以改善土壤环境,调节植物利用与分配资源的效率,促进植物定居,得到人工促进种群更新的目的。但在实践过程中也要避免过度施N。 Arid regions of the world are generally noted for their low primary productivity which is due to a combination of low, unpredictable water supply and low soil nutrient concentrations. The most serious effects of global climate change and human disturbances may well be those which related to increasing drought since drought stress has already been the principal constraint in plant growth. The decline in total rainfall and/or soil water availability expected for the next decades may turn out to be even more drastic under future warmer conditions. Nevertheless, water deficit is not the only limiting factor in arid and semiarid environments. Soils often suffer from nutrient (especially N and P) deficiencies in these ecosystems, which can also be worsened by climate change. How to improve the poor soil quality and enhance the vegetation coverage is always the problem facing ecosystem managers. The adaptive mechanisms of native plant to future climate change is always the focus in plant ecology, it also plays important roles in improving vegetation coverage by manual controlled programmes. Sophora davidii is a native perennial shrub of arid valleys, which is often predominant on eroded slopes and plays a vital role in retaining ecological stability in this region. It has been found that S. davidii was better adapted to dry environment than other shrubs, prompting its use for re-vegetation of arid lands. A two-years greenhouse experiment and a field experiment were conducted in order to understand the adaptation responses of Sophora davidii seedlings to different water and N conditions, and further explore if additional N supply as a modified role could enhance the adaptation ability of S. davidii seedlings to dry and infertile environment. Two-month old seedlings were subjected to a completely randome design with three water (80%, 40% and 20% water field capacity (FC)) and three N supply (N0: 0, Nl: 92 and Nh: 184 mg N kg-1 soil) regimes. Field experiment was arranged only by three N supplies in the dry valley. 1) The growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings in respond to drought stress and N supply Seedlings height, basal diameter, leaf number, leaf area, root length, biomass production, relative water content (RWC) and WUE were decreased with increase of drought stress. An increase in below-ground biomass was observed indicating a higher root/shoot ratio (R/S) under drought stress conditions. Low N supply increased seedlings height, basal diameter, leaf number, leaf area, and biomass production, but decreased root length. In contrast, these growth characteristics showed little or negative effect to high N supply treatment. Leaf percentages increased with increase of N supply, but fine root percentages decreased. In addition, Low N supply rather than the other two N treatments increased leaf area ratio (LAR), leaf/fine root mass ratio (L/FR), R/S and RWC under severe drought stress (20%FC), even though these parameters could increase with the high N supply treatment under well-watered condition (80%FC). Moreover, Low N supply also increased WUE under three water conditions, but high N supply had little effect on WUE under drought stress conditions (40%FC and 20%FC). 2) Leaf gas exchange and fluorescence parameters of Sophora davidii seedlings in respond to drought stress and N supply Leaf area (LA), photosynthetic pigment contents, and photosynthetic efficiency were decreased with increase of drought stress, but specific leaf area (SLA) increased. Photodamage in photosystem 2 (PS2) was also observed under drought stress condition. The decreased net photosynthetic rate (PN) under relative well-watered water conditions might result from stomatal limitations, but the decreased PN under other hand, photosynthetic capacity by increasing LA, photosynthetic chlorophyll contents, Pnmax, CE, Jmax were increased with increase N supply, and photosynthetic efficiency was improved with N supply treatment under water deficit. Although N supply did a little in alleviating photodamages to PS2 caused by drought stress, low N supply enhanced qN and kept relative high Fv/Fm under drought stress condition. However, high N supply inhibited leaf photosynthetic efficiency, and declined Fv/Fm and qN under severe drought stress condition after two year continues drought stress and N supply. 3) Carbon accumulation, nitrogen and phosphorus use efficiency of Sophora davidii seedlings in respond to drought stress and N supply C, N and P accumulation, NUE , N and P uptake efficiency (NUtE and NUtE ) P N P were decreased with increase of drought stress regardless of N supply. On the other hand, the S. davidii seedlings exhibited strong responses to N supply, but the responses were inconsistent with the various N supply levels. Low N supply rather than the other two N treatments increased C, N and P accumulation, improved NUEP, NUtE and NUtE under corresponding water condition. In contrast, high N supply N P did few even depressed effects on C, N and P accumulation, and NUEP, although NUtEN and NUtEP could increase with high N supply under corresponding water conditions. Even so, a decrease of NUEN was observed with increase of N supply under corresponding water conditions. 4) Soil microbial and chemical characters in respond to drought stress and N supply The content of soil organic C, available N and P were decreased with increase of drought stress. Decreases in C/N and C/P, and invertase, urea and alkaline phosphatase activity were also observed under drought stress conditions, indicating a lower N and P mineralization rate. Although microbial biomass C, N and P showed slight responses to drought stress after one growth period treatment, microbial biomass C and N were also decreased with increase of drought stress after two year continuous treatment. The content of soil organic C and available P showed the stronger positive responses to low N supply than which to high N supply, although than the other two N treatments increased microbial biomass N and invertase activity under severe drought stress condition, even though invertase activity could increase with high N supply treatment under relative well-water conditions. Moreover, low N supply treatment also increased C/P and alkaline phosphatase activity which might result from higher P mineralization, but high N supply did negative effects on alkaline phosphatase activity. 5) The growth characteristics of Sophora davidii seedlings and soil microbial and chemical characters in respond to N supply under field condition Low N supply facilitated seedlings growth by increasing leaf number, basal diameter, root length, biomass production, C, N and P accumulation and absorption, and enhancing the use efficiency of other limited resources as P. Compared to control, however, low N supply did little effect on altering biomass, C, N and P portioning in seedlings components. On the contrary, high N supply treatment also increased leaf number, biomass and C, N and P accumulation relative to control, but significantly decreased root length, and altered more biomass and resources to above-ground, which strongly reduced the ability of absorbing water under drought condition, and thus which might deep the drought stress. In addition, N supply increased soil C, N and available N content, but declined pH and showed little effects on P content. Low N supply showed higher values of soil C and available P content. Low N supply also increased microbial biomass C, N and P, although high N supply decreased microbial biomass C. N supply significantly enhanced soil invertase, urea, alkaline and neutral phosphratase activity, while declined acid phosphratase and catalase activity. Low N supply exhibited higher alkaline and neutral phosphratase activity compared to the others. The results from this study indicated that both drought and N limited the growth of S. davidii seedlings and their biomass production. Regardless of N supply levels, drought stress dramatically reduced the seedlings growth and biomass production. Although plant growth parameters, including basal diameter, height, leaf number, and biomass and their components were observed to be positive responses to low N supply, N supply alone can not alter the diminishing tendency which is caused by drought. available N content increased with increase N supply. In addition, low N supply rather These findings imply that drought played a primary limitation role and N was only the secondary. Even so, appropriate N supply was seemed to enhance the ability that S. davidii seedlings adapted to the xeric and infertile environment by improving soil processes, stimulating plant growth, increasing recourses accumulation, enhancing use efficiency of other limited resources, and balancing biomass and resources partitioning. Appropriate N supply, therefore, would be recommended to improve S. davidii seedling establishment in this region, but excess N supply should be avoided.
Resumo:
Effects of grazing intensity on leaf photosynthetic rate (Pn), specific leaf area (SLA), individual tiller density, sward leaf area index (LAI), harvested herbage DM, and species composition in grass mixtures (Clinelymus nutans + Bromus inermis, Elymus nutans + Bromus inermis + Agropyron cristatum and Elymus nutans + Clinelymus nutans + Bromus inermis + Agropyron cristatum) were studied in the alpine region of the Tibetan Plateau. Four grazing intensities (GI), expressed as feed utilisation rates (UR) by Tibetan lambs were imposed as follows: (1) no grazing; (2) 30% UR as light grazing; (3) 50% UR as medium grazing; and (4) 70% UR as high grazing. Leaf Pn rate and tiller density of grasses increased (P < 0.05), while sward LAI and harvested herbage DM declined (P < 0.05) with the increments of GI, although no effect of GI on SLA was observed. With increasing GI, Elymus nutans and Clinelymus nutans increased but Bromus inermis and Agropyron cristatum decreased in swards, LAI and DM contribution. Whether being grazed or not, Elymus nutans + Clinelymus nutans + Bromus inermis + Agropyron cristatum was the most productive sward among the grass mixtures. Thus, two well-performed grass species (Elymus nutans and Clinelymus nutans) and the most productive mixture of four species should be investigated further as the new feed resources in the alpine grazing system of the Tibetan Plateau. Light grazing intensity of 30% UR was recommended for these grass mixtures when swards, LAI, herbage DM harvested, and species compatibility were taken into account.
Resumo:
Mon mémoire de maîtrise a été réalisé dans le cadre du projet Génorem (www.genorem.ca), un projet multidisciplinaire qui réunit différents chercheurs de l'Université de Montréal et de l'Université McGill dans le but d'améliorer les techniques utilisées en bioremédiation. Dans le cadre de l'étude, des saules à croissance rapide (Salix sp.) ont été utilisés comme plantes modèles dans l'étude. Ainsi, 11 cultivars de saule ont été suivis afin de déterminer leur potentiel à produire un bon rendement de biomasse, à tolérer des conditions de stress sévère causé par la présence de HAPs (hydrocarbures aromatiques polycycliques) , BPCs (biphényles polychlorés) et d'hydrocarbures pétroliers C10-C50. L'expérimentation consistait en une plantation de saule à forte densité qui a été mise en place en 2011 sur le site d'une ancienne industrie de pétrochimie à Varennes, dans le sud du Québec. Les boutures des génotypes sélectionnés ont été plantées sur une superficie d'environ 5000 m2. Les plantes ont été suivies pendant les deux saisons de croissance suivant le recépage et une série de paramètres de croissance et de mesures physiologiques ont été récoltés (surface foliaire, taux de chlorophylle, conductance stomatique et statut nutritionnel) dans le but d'évaluer et de comparer les performances de chaque génotype sur un sol pollué. Les analyses statistiques ont démontré que le cultivar S. miyabeana (SX61) était le meilleur producteur de biomasse sur le site contaminé, tandis que S. nigra (S05) et S. acutifolia (S54) présentaient la meilleure capacité photosynthétique. S. dasyclados (SV1), S. purpurea (‘Fish Creek’) et S. caprea (S365) ont semblé particulièrement affectés par la présence de contaminants. La capacité d'établissement et la croissance de S. nigra (S05), S. eriocephala (S25) and S. purpurea x S. miyabeana (‘Millbrook’) indiquent une tolérance globale supérieure à la pollution . Cette analyse comparative des différentes réponses physiologiques des saules cultivés sur un sol contaminé pourra guider le processus de sélection de plantes et les techniques de bioremédiation dans les futurs projets de phytoremédiation.
Resumo:
We assessed the potential for using optical functional types as effective markers to monitor changes in vegetation in floodplain meadows associated with changes in their local environment. Floodplain meadows are challenging ecosystems for monitoring and conservation because of their highly biodiverse nature. Our aim was to understand and explain spectral differences among key members of floodplain meadows and also characterize differences with respect to functional traits. The study was conducted on a typical floodplain meadow in UK (MG4-type, mesotrophic grassland type 4, according to British National Vegetation Classification). We compared two approaches to characterize floodplain communities using field spectroscopy. The first approach was sub-community based, in which we collected spectral signatures for species groupings indicating two distinct eco-hydrological conditions (dry and wet soil indicator species). The other approach was “species-specific”, in which we focused on the spectral reflectance of three key species found on the meadow. One herb species is a typical member of the MG4 floodplain meadow community, while the other two species, sedge and rush, represent wetland vegetation. We also monitored vegetation biophysical and functional properties as well as soil nutrients and ground water levels. We found that the vegetation classes representing meadow sub-communities could not be spectrally distinguished from each other, whereas the individual herb species was found to have a distinctly different spectral signature from the sedge and rush species. The spectral differences between these three species could be explained by their observed differences in plant biophysical parameters, as corroborated through radiative transfer model simulations. These parameters, such as leaf area index, leaf dry matter content, leaf water content, and specific leaf area, along with other functional parameters, such as maximum carboxylation capacity and leaf nitrogen content, also helped explain the species’ differences in functional dynamics. Groundwater level and soil nitrogen availability, which are important factors governing plant nutrient status, were also found to be significantly different for the herb/wetland species’ locations. The study concludes that spectrally distinguishable species, typical for a highly biodiverse site such as a floodplain meadow, could potentially be used as target species to monitor vegetation dynamics under changing environmental conditions.
Resumo:
1. Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. 2. Using data from an extensive national survey of English grasslands we show that surface soil (0-7cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. 3. Soil C stocks in the largest pool, of intermediate particle size (50-250 µm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0.45-50 µm), was explained by soil pH and the community abundance weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N rich vegetation. The C stock in the small active fraction (250-4000 µm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. 4. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. 5. Synthesis and Applications: Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1-100,000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.