983 resultados para spatial prediction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim
It is widely acknowledged that species distributions result from a variety of biotic and abiotic factors operating at different spatial scales. Here, we aimed to (1) determine the extent to which global climate niche models (CNMs) can be improved by the addition of fine-scale regional data; (2) examine climatic and environmental factors influencing the range of 15 invasive aquatic plant species; and (3) provide a case study for the use of such models in invasion management on an island.

Location
Global, with a case study of species invasions in Ireland.

Methods
Climate niche models of global extent (including climate only) and regional environmental niche models (with additional factors such as human influence, land use and soil characteristics) were generated using maxent for 15 invasive aquatic plants. The performance of these models within the invaded range of the study species in Ireland was assessed, and potential hotspots of invasion suitability were determined. Models were projected forward up to 2080 based on two climate scenarios.

Results
While climate variables are important in defining the global range of species, factors related to land use and nutrient level were of greater importance in regional projections. Global climatic models were significantly improved at the island scale by the addition of fine-scale environmental variables (area under the curve values increased by 0.18 and true skill statistic values by 0.36), and projected ranges decreased from an average of 86% to 36% of the island.

Main conclusions
Refining CNMs with regional data on land use, human influence and landscape may have a substantial impact on predictive capacity, providing greater value for prioritization of conservation management at subregional or local scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite its wide implications for many ecological issues, the global pattern of spatial turnover in the occurrence of species has been little studied, unlike the global pattern of species richness. Here, using a database on the breeding distributions of birds, we present the first global maps of variation in spatial turnover for an entire taxonomic class, a pattern that has to date remained largely a matter of conjecture, based on theoretical expectations and extrapolation of inconsistent patterns from different biogeographic realms. We use these maps to test four predictions from niche theory as to the form that this variation should take, namely that turnover should increase with species richness, towards lower latitudes, and with the steepness of environmental gradients and that variation in turnover is determined principally by rare (restricted) species. Contrary to prediction, we show that turnover is high both in areas of extremely low and high species richness, does not increase strongly towards the tropics, and is related both to average environmental conditions and spatial variation in those conditions. These results are closely associated with a further important and novel finding, namely that global patterns of spatial turnover are driven principally by widespread species rather than the restricted ones. This complements recent demonstrations that spatial patterns of species richness are also driven principally by widespread species, and thus provides an important contribution towards a unified model of how terrestrial biodiversity varies both within and between the Earth's major land masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration's (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) onboard the European Meteorological Satellite programme's (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study anti control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The prediction and mapping of climate in areas between climate stations is of increasing importance in ecology.

2. Four categories of model, simple interpolation, thin plate splines, multiple linear regression and mixed spline-regression, were tested for their ability to predict the spatial distribution of temperature on the British mainland. The models were tested by external cross-verification.

3. The British distribution of mean daily temperature was predicted with the greatest accuracy by using a mixed model: a thin plate spline fitted to the surface of the country, after correction of the data by a selection from 16 independent topographical variables (such as altitude, distance from the sea, slope and topographic roughness), chosen by multiple regression from a digital terrain model (DTM) of the country.

4. The next most accurate method was a pure multiple regression model using the DTM. Both regression and thin plate spline models based on a few variables (latitude, longitude and altitude) only were comparatively unsatisfactory, but some rather simple methods of surface interpolation (such as bilinear interpolation after correction to sea level) gave moderately satisfactory results. Differences between the methods seemed to be dependent largely on their ability to model the effect of the sea on land temperatures.

5. Prediction of temperature by the best methods was greater than 95% accurate in all months of the year, as shown by the correlation between the predicted and actual values. The predicted temperatures were calculated at real altitudes, not subject to sea-level correction.

6. A minimum of just over 30 temperature recording stations would generate a satisfactory surface, provided the stations were well spaced.

7. Maps of mean daily temperature, using the best overall methods are provided; further important variables, such as continentality and length of growing season, were also mapped. Many of these are believed to be the first detailed representations at real altitude.

8. The interpolated monthly temperature surfaces are available on disk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting the next location of a user based on their previous visiting pattern is one of the primary tasks over data from location based social networks (LBSNs) such as Foursquare. Many different aspects of these so-called “check-in” profiles of a user have been made use of in this task, including spatial and temporal information of check-ins as well as the social network information of the user. Building more sophisticated prediction models by enriching these check-in data by combining them with information from other sources is challenging due to the limited data that these LBSNs expose due to privacy concerns. In this paper, we propose a framework to use the location data from LBSNs, combine it with the data from maps for associating a set of venue categories with these locations. For example, if the user is found to be checking in at a mall that has cafes, cinemas and restaurants according to the map, all these information is associated. This category information is then leveraged to predict the next checkin location by the user. Our experiments with publicly available check-in dataset show that this approach improves on the state-of-the-art methods for location prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geostatistics has been successfully used to analyze and characterize the spatial variability of environmental properties. Besides giving estimated values at unsampled locations, it provides a measure of the accuracy of the estimate, which is a significant advantage over traditional methods used to assess pollution. In this work universal block kriging is novelty used to model and map the spatial distribution of salinity measurements gathered by an Autonomous Underwater Vehicle in a sea outfall monitoring campaign, with the aim of distinguishing the effluent plume from the receiving waters, characterizing its spatial variability in the vicinity of the discharge and estimating dilution. The results demonstrate that geostatistical methodology can provide good estimates of the dispersion of effluents that are very valuable in assessing the environmental impact and managing sea outfalls. Moreover, since accurate measurements of the plume’s dilution are rare, these studies might be very helpful in the future to validate dispersion models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sorption is commonly agreed to be the major process underlying the transport and fate of polycyclic aromatic hydrocarbons (PAHs) in soils. However, there is still a scarcity of studies focusing on spatial variability at the field scale in particular. In order to investigate the variation in the field of phenanthrene sorption, bulk topsoil samples were taken in a 15 × 15-m grid from the plough layer in two sandy loam fields with different texture and organic carbon (OC) contents (140 samples in total). Batch experiments were performed using the adsorption method. Values for the partition coefficient K d (L kg−1) and the organic carbon partition coefficient K OC (L kg−1) agreed with the most frequently used models for PAH partitioning, as OC revealed a higher affinity for sorption. More complex models using different OC compartments, such as non-complexed organic carbon (NCOC) and complexed organic carbon (COC) separately, performed better than single K OC models, particularly for a subset including samples with Dexter n < 10 and OC <0.04 kg kg−1. The selected threshold revealed that K OC-based models proved to be applicable for more organic fields, while two-component models proved to be more accurate for the prediction of K d and retardation factor (R) for less organic soils. Moreover, OC did not fully reflect the changes in phenanthrene retardation in the field with lower OC content (Faardrup). Bulk density and available water content influenced the phenanthrene transport mechanism phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present study is to understand the spatial and temporal variability of sea surface temperature(SST), precipitable water, zonal and meridional components of wind stress over the tropical Indian Ocean to understand the different scales of variability of these features of Indian Ocean. Empirical Orthogonal Function (EOF) and wavelet analysis techniques are utilized to understand the standing oscillations and multi scale oscillations respectively. The study has been carried out over Indian Ocean and South Indian Ocean. For the present study, NCEP/NCAR(National Center for Environmental Prediction National Center for Atmospheric Research) reanalyzed daily fields of sea surface temperature, zonal and meridional surface wind components and precipitable water amount during 1960-1998 are used. The principle of EOF analysis and the methodology used for the analysis of spatial and temporal variance modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research of this thesis dissertation covers developments and applications of short-and long-term climate predictions. The short-term prediction emphasizes monthly and seasonal climate, i.e. forecasting from up to the next month over a season to up to a year or so. The long-term predictions pertain to the analysis of inter-annual- and decadal climate variations over the whole 21st century. These two climate prediction methods are validated and applied in the study area, namely, Khlong Yai (KY) water basin located in the eastern seaboard of Thailand which is a major industrial zone of the country and which has been suffering from severe drought and water shortage in recent years. Since water resources are essential for the further industrial development in this region, a thorough analysis of the potential climate change with its subsequent impact on the water supply in the area is at the heart of this thesis research. The short-term forecast of the next-season climate, such as temperatures and rainfall, offers a potential general guideline for water management and reservoir operation. To that avail, statistical models based on autoregressive techniques, i.e., AR-, ARIMA- and ARIMAex-, which includes additional external regressors, and multiple linear regression- (MLR) models, are developed and applied in the study region. Teleconnections between ocean states and the local climate are investigated and used as extra external predictors in the ARIMAex- and the MLR-model and shown to enhance the accuracy of the short-term predictions significantly. However, as the ocean state – local climate teleconnective relationships provide only a one- to four-month ahead lead time, the ocean state indices can support only a one-season-ahead forecast. Hence, GCM- climate predictors are also suggested as an additional predictor-set for a more reliable and somewhat longer short-term forecast. For the preparation of “pre-warning” information for up-coming possible future climate change with potential adverse hydrological impacts in the study region, the long-term climate prediction methodology is applied. The latter is based on the downscaling of climate predictions from several single- and multi-domain GCMs, using the two well-known downscaling methods SDSM and LARS-WG and a newly developed MLR-downscaling technique that allows the incorporation of a multitude of monthly or daily climate predictors from one- or several (multi-domain) parent GCMs. The numerous downscaling experiments indicate that the MLR- method is more accurate than SDSM and LARS-WG in predicting the recent past 20th-century (1971-2000) long-term monthly climate in the region. The MLR-model is, consequently, then employed to downscale 21st-century GCM- climate predictions under SRES-scenarios A1B, A2 and B1. However, since the hydrological watershed model requires daily-scale climate input data, a new stochastic daily climate generator is developed to rescale monthly observed or predicted climate series to daily series, while adhering to the statistical and geospatial distributional attributes of observed (past) daily climate series in the calibration phase. Employing this daily climate generator, 30 realizations of future daily climate series from downscaled monthly GCM-climate predictor sets are produced and used as input in the SWAT- distributed watershed model, to simulate future streamflow and other hydrological water budget components in the study region in a multi-realization manner. In addition to a general examination of the future changes of the hydrological regime in the KY-basin, potential future changes of the water budgets of three main reservoirs in the basin are analysed, as these are a major source of water supply in the study region. The results of the long-term 21st-century downscaled climate predictions provide evidence that, compared with the past 20th-reference period, the future climate in the study area will be more extreme, particularly, for SRES A1B. Thus, the temperatures will be higher and exhibit larger fluctuations. Although the future intensity of the rainfall is nearly constant, its spatial distribution across the region is partially changing. There is further evidence that the sequential rainfall occurrence will be decreased, so that short periods of high intensities will be followed by longer dry spells. This change in the sequential rainfall pattern will also lead to seasonal reductions of the streamflow and seasonal changes (decreases) of the water storage in the reservoirs. In any case, these predicted future climate changes with their hydrological impacts should encourage water planner and policy makers to develop adaptation strategies to properly handle the future water supply in this area, following the guidelines suggested in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An emerging consensus in cognitive science views the biological brain as a hierarchically-organized predictive processing system. This is a system in which higher-order regions are continuously attempting to predict the activity of lower-order regions at a variety of (increasingly abstract) spatial and temporal scales. The brain is thus revealed as a hierarchical prediction machine that is constantly engaged in the effort to predict the flow of information originating from the sensory surfaces. Such a view seems to afford a great deal of explanatory leverage when it comes to a broad swathe of seemingly disparate psychological phenomena (e.g., learning, memory, perception, action, emotion, planning, reason, imagination, and conscious experience). In the most positive case, the predictive processing story seems to provide our first glimpse at what a unified (computationally-tractable and neurobiological plausible) account of human psychology might look like. This obviously marks out one reason why such models should be the focus of current empirical and theoretical attention. Another reason, however, is rooted in the potential of such models to advance the current state-of-the-art in machine intelligence and machine learning. Interestingly, the vision of the brain as a hierarchical prediction machine is one that establishes contact with work that goes under the heading of 'deep learning'. Deep learning systems thus often attempt to make use of predictive processing schemes and (increasingly abstract) generative models as a means of supporting the analysis of large data sets. But are such computational systems sufficient (by themselves) to provide a route to general human-level analytic capabilities? I will argue that they are not and that closer attention to a broader range of forces and factors (many of which are not confined to the neural realm) may be required to understand what it is that gives human cognition its distinctive (and largely unique) flavour. The vision that emerges is one of 'homomimetic deep learning systems', systems that situate a hierarchically-organized predictive processing core within a larger nexus of developmental, behavioural, symbolic, technological and social influences. Relative to that vision, I suggest that we should see the Web as a form of 'cognitive ecology', one that is as much involved with the transformation of machine intelligence as it is with the progressive reshaping of our own cognitive capabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A regional study of the prediction of extratropical cyclones by the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) has been performed. An objective feature-tracking method has been used to identify and track the cyclones along the forecast trajectories. Forecast error statistics have then been produced for the position, intensity, and propagation speed of the storms. In previous work, data limitations meant it was only possible to present the diagnostics for the entire Northern Hemisphere (NH) or Southern Hemisphere. A larger data sample has allowed the diagnostics to be computed separately for smaller regions around the globe and has made it possible to explore the regional differences in the prediction of storms by the EPS. Results show that in the NH there is a larger ensemble mean error in the position of storms over the Atlantic Ocean. Further analysis revealed that this is mainly due to errors in the prediction of storm propagation speed rather than in direction. Forecast storms propagate too slowly in all regions, but the bias is about 2 times as large in the NH Atlantic region. The results show that storm intensity is generally overpredicted over the ocean and underpredicted over the land and that the absolute error in intensity is larger over the ocean than over the land. In the NH, large errors occur in the prediction of the intensity of storms that originate as tropical cyclones but then move into the extratropics. The ensemble is underdispersive for the intensity of cyclones (i.e., the spread is smaller than the mean error) in all regions. The spatial patterns of the ensemble mean error and ensemble spread are very different for the intensity of cyclones. Spatial distributions of the ensemble mean error suggest that large errors occur during the growth phase of storm development, but this is not indicated by the spatial distributions of the ensemble spread. In the NH there are further differences. First, the large errors in the prediction of the intensity of cyclones that originate in the tropics are not indicated by the spread. Second, the ensemble mean error is larger over the Pacific Ocean than over the Atlantic, whereas the opposite is true for the spread. The use of a storm-tracking approach, to both weather forecasters and developers of forecast systems, is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil microflora is very heterogeneous in its spatial distribution. The origins of this heterogeneity and its significance for soil function are not well understood. A problem for understanding spatial variation better is the assumption of statistical stationarity that is made in most of the statistical methods used to assess it. These assumptions are made explicit in geostatistical methods that have been increasingly used by soil biologists in recent years. Geostatistical methods are powerful, particularly for local prediction, but they require the assumption that the variability of a property of interest is spatially uniform, which is not always plausible given what is known about the complexity of the soil microflora and the soil environment. We have used the wavelet transform, a relatively new innovation in mathematical analysis, to investigate the spatial variation of abundance of Azotobacter in the soil of a typical agricultural landscape. The wavelet transform entails no assumptions of stationarity and is well suited to the analysis of variables that show intermittent or transient features at different spatial scales. In this study, we computed cross-variograms of Azotobacter abundance with the pH, water content and loss on ignition of the soil. These revealed scale-dependent covariation in all cases. The wavelet transform also showed that the correlation of Azotobacter abundance with all three soil properties depended on spatial scale, the correlation generally increased with spatial scale and was only significantly different from zero at some scales. However, the wavelet analysis also allowed us to show how the correlation changed across the landscape. For example, at one scale Azotobacter abundance was strongly correlated with pH in part of the transect, and not with soil water content, but this was reversed elsewhere on the transect. The results show how scale-dependent variation of potentially limiting environmental factors can induce a complex spatial pattern of abundance in a soil organism. The geostatistical methods that we used here make assumptions that are not consistent with the spatial changes in the covariation of these properties that our wavelet analysis has shown. This suggests that the wavelet transform is a powerful tool for future investigation of the spatial structure and function of soil biota. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the study was to establish and verify a predictive vegetation model for plant community distribution in the alti-Mediterranean zone of the Lefka Ori massif, western Crete. Based on previous work three variables were identified as significant determinants of plant community distribution, namely altitude, slope angle and geomorphic landform. The response of four community types against these variables was tested using classification trees analysis in order to model community type occurrence. V-fold cross-validation plots were used to determine the length of the best fitting tree. The final 9node tree selected, classified correctly 92.5% of the samples. The results were used to provide decision rules for the construction of a spatial model for each community type. The model was implemented within a Geographical Information System (GIS) to predict the distribution of each community type in the study site. The evaluation of the model in the field using an error matrix gave an overall accuracy of 71%. The user's accuracy was higher for the Crepis-Cirsium (100%) and Telephium-Herniaria community type (66.7%) and relatively lower for the Peucedanum-Alyssum and Dianthus-Lomelosia community types (63.2% and 62.5%, respectively). Misclassification and field validation points to the need for improved geomorphological mapping and suggests the presence of transitional communities between existing community types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) is a World Weather Research Programme project. One of its main objectives is to enhance collaboration on the development of ensemble prediction between operational centers and universities by increasing the availability of ensemble prediction system (EPS) data for research. This study analyzes the prediction of Northern Hemisphere extratropical cyclones by nine different EPSs archived as part of the TIGGE project for the 6-month time period of 1 February 2008–31 July 2008, which included a sample of 774 cyclones. An objective feature tracking method has been used to identify and track the cyclones along the forecast trajectories. Forecast verification statistics have then been produced [using the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis as the truth] for cyclone position, intensity, and propagation speed, showing large differences between the different EPSs. The results show that the ECMWF ensemble mean and control have the highest level of skill for all cyclone properties. The Japanese Meteorological Administration (JMA), the National Centers for Environmental Prediction (NCEP), the Met Office (UKMO), and the Canadian Meteorological Centre (CMC) have 1 day less skill for the position of cyclones throughout the forecast range. The relative performance of the different EPSs remains the same for cyclone intensity except for NCEP, which has larger errors than for position. NCEP, the Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), and the Australian Bureau of Meteorology (BoM) all have faster intensity error growth in the earlier part of the forecast. They are also very underdispersive and significantly underpredict intensities, perhaps due to the comparatively low spatial resolutions of these EPSs not being able to accurately model the tilted structure essential to cyclone growth and decay. There is very little difference between the levels of skill of the ensemble mean and control for cyclone position, but the ensemble mean provides an advantage over the control for all EPSs except CPTEC in cyclone intensity and there is an advantage for propagation speed for all EPSs. ECMWF and JMA have an excellent spread–skill relationship for cyclone position. The EPSs are all much more underdispersive for cyclone intensity and propagation speed than for position, with ECMWF and CMC performing best for intensity and CMC performing best for propagation speed. ECMWF is the only EPS to consistently overpredict cyclone intensity, although the bias is small. BoM, NCEP, UKMO, and CPTEC significantly underpredict intensity and, interestingly, all the EPSs underpredict the propagation speed, that is, the cyclones move too slowly on average in all EPSs.