936 resultados para spatial activity recognition
Resumo:
Human ciliary neurotrophic factor (hCNTF), which promotes the cell survival and differentiation of motor and other neurons, is a protein belonging structurally to the alpha-helical cytokine family. hCNTF was subjected to three-dimensional structure modeling and site-directed mutagenesis to analyze its structure-function relationship. The replacement of Lys-155 with any other amino acid residue resulted in abolishment of neural cell survival activity, and some of the Glu-153 mutant proteins had 5- to 10-fold higher biological activity. The D1 cap region (around the boundary between the CD loop and helix D) of hCNTF, including both Glu-153 and Lys-155, was shown to play a key role in the biological activity of hCNTF as one of the putative receptor-recognition sites. In this article, the D1 cap region of the 4-helix-bundle proteins is proposed to be important in receptor recognition and biological activity common to alpha-helical cytokine proteins reactive with gp130, a component protein of the receptors.
Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex.
Resumo:
The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex.
Resumo:
The visual stimuli that elicit neural activity differ for different retinal ganglion cells and these cells have been categorized by the visual information that they transmit. If specific visual information is conveyed exclusively or primarily by a particular set of ganglion cells, one might expect the cells to be organized spatially so that their sampling of information from the visual field is complete but not redundant. In other words, the laterally spreading dendrites of the ganglion cells should completely cover the retinal plane without gaps or significant overlap. The first evidence for this sort of arrangement, which has been called a tiling or tessellation, was for the two types of "alpha" ganglion cells in cat retina. Other reports of tiling by ganglion cells have been made subsequently. We have found evidence of a particularly rigorous tiling for the four types of ganglion cells in rabbit retina that convey information about the direction of retinal image motion (the ON-OFF direction-selective cells). Although individual cells in the four groups are morphologically indistinguishable, they are organized as four overlaid tilings, each tiling consisting of like-type cells that respond preferentially to a particular direction of retinal image motion. These observations lend support to the hypothesis that tiling is a general feature of the organization of information outflow from the retina and clearly implicate mechanisms for recognition of like-type cells and establishment of mutually acceptable territories during retinal development.
Resumo:
Plants can defend themselves from potential pathogenic microorganisms relying on a complex interplay of signaling pathways: activation of the MAPK cascade, transcription of defense related genes, production of reactive oxygen species, nitric oxide and synthesis of other defensive compounds such as phytoalexins. These events are triggered by the recognition of pathogen’s effectors (effector-triggered immunity) or PAMPs (PAMP-triggered immunity). The Cerato Platanin Family (CPF) members are Cys-rich proteins secreted and localized on fungal cell walls, involved in several aspects of fungal development and pathogen-host interactions. Although more than hundred genes of the CPF have been identified and analyzed, the structural and functional characterization of the expressed proteins has been restricted only to few members of the family. Interestingly, those proteins have been shown to bind chitin with diverse affinity and after foliar treatment they elicit defensive mechanisms in host and non-host plants. This property turns cerato platanins into interesting candidates, worth to be studied to develop new fungal elicitors with applications in sustainable agriculture. This study focus on cerato-platanin (CP), core member of the family and on the orthologous cerato-populin (Pop1). The latter shows an identity of 62% and an overall homology of 73% with respect to CP. Both proteins are able to induce MAPKs phosphorylation, production of reactive oxygen species and nitric oxide, overexpression of defense’s related genes, programmed cell death and synthesis of phytoalexins. CP, however, when compared to Pop1, induces a faster response and, in some cases, a stronger activity on plane leaves. Aim of the present research is to verify if the dissimilarities observed in the defense elicitation activity of these proteins can be associated to their structural and dynamic features. Taking advantage of the available CP NMR structure, Pop1’s 3D one was obtained by homology modeling. Experimental residual dipolar couplings and 1H, 15N, 13C resonance assignments were used to validate the model. Previous works on CPF members, addressed the highly conserved random coil regions (loops b1-b2 and b2-b3) as sufficient and necessary to induce necrosis in plants’ leaves: that region was investigated in both Pop1 and CP. In the two proteins the loops differ, in their primary sequence, for few mutations and an insertion with a consequent diversification of the proteins’ electrostatic surface. A set of 2D and 3D NMR experiments was performed to characterize both the spatial arrangement and the dynamic features of the loops. NOE data revealed a more extended network of interactions between the loops in Pop1 than in CP. In addition, in Pop1 we identified a salt bridge Lys25/Asp52 and a strong hydrophobic interaction between Phe26/Trp53. These structural features were expected not only to affect the loops’ spatial arrangement, but also to reduce the degree of their conformational freedom. Relaxation data and the order parameter S2 indeed highlighted reduced flexibility, in particular for loop b1-b2 of Pop1. In vitro NMR experiments, where Pop1 and CP were titrated with oligosaccharides, supported the hypothesis that the loops structural and dynamic differences may be responsible for the different chitin-binding properties of the two proteins: CP selectively binds tetramers of chitin in a shallow groove on one side of the barrel defined by loops b1-b2, b2-b3 and b4-b5, Pop1, instead, interacts in a non-specific fashion with oligosaccharides. Because the region involved in chitin-binding is also responsible for the defense elicitation activity, possibly being recognized by plant's receptors, it is reasonable to expect that those structural and dynamic modifications may also justify the different extent of defense elicitation. To test that hypothesis, the initial steps of a protocol aimed to the identify a receptor for CP, in silico, are presented.
Resumo:
Gamma activity to stationary grating stimuli was studied non-invasively using MEG recordings in humans. Using a spatial filtering technique, we localized gamma activity to primary visual cortex. We tested the hypothesis that spatial frequency properties of visual stimuli may be related to the temporal frequency characteristics of the associated cortical responses. We devised a method to assess temporal frequency differences between stimulus-related responses that typically exhibit complex spectral shapes. We applied this methodology to either single-trial (induced) or time-averaged (evoked) responses in four frequency ranges (0-40, 20-60, 40-80 and 60-100 Hz) and two time windows (either the entire duration of stimulus presentation or the first second following stimulus onset). Our results suggest that stimuli of varying spatial frequency induce responses that exhibit significantly different temporal frequency characteristics. These effects were particularly accentuated for induced responses in the classical gamma frequency band (20-60 Hz) analyzed over the entire duration of stimulus presentation. Strikingly, examining the first second of the responses following stimulus onset resulted in significant loss in stimulus specificity, suggesting that late signal components contain functionally relevant information. These findings advocate a functional role of gamma activity in sensory representation. We suggest that stimulus specific frequency characteristics of MEG signals can be mapped to processes of neuronal synchronization within the framework of coupled dynamical systems.
Resumo:
Visual mental imagery is a complex process that may be influenced by the content of mental images. Neuropsychological evidence from patients with hemineglect suggests that in the imagery domain environments and objects may be represented separately and may be selectively affected by brain lesions. In the present study, we used functional magnetic resonance imaging (fMRI) to assess the possibility of neural segregation among mental images depicting parts of an object, of an environment (imagined from a first-person perspective), and of a geographical map, using both a mass univariate and a multivariate approach. Data show that different brain areas are involved in different types of mental images. Imagining an environment relies mainly on regions known to be involved in navigational skills, such as the retrosplenial complex and parahippocampal gyrus, whereas imagining a geographical map mainly requires activation of the left angular gyrus, known to be involved in the representation of categorical relations. Imagining a familiar object mainly requires activation of parietal areas involved in visual space analysis in both the imagery and the perceptual domain. We also found that the pattern of activity in most of these areas specifically codes for the spatial arrangement of the parts of the mental image. Our results clearly demonstrate a functional neural segregation for different contents of mental images and suggest that visuospatial information is coded by different patterns of activity in brain areas involved in visual mental imagery. Hum Brain Mapp 36:945-958, 2015.
Resumo:
Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind related GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. The structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.
Resumo:
Three populations of neurons expressing the vesicular glutamate transporter 2 (Vglut2) were recently described in the A10 area of the mouse midbrain, of which two populations were shown to express the gene encoding, the rate-limiting enzyme for catecholamine synthesis, tyrosine hydroxylase (TH).One of these populations (‘‘TH– Vglut2 Class1’’) also expressed the dopamine transporter (DAT) gene while one did not ("TH–Vglut2 Class2"), and the remaining population did not express TH at all ("TH-Vglut2-only"). TH is known to be expressed by a promoter which shows two phases of activation, a transient one early during embryonal development, and a later one which gives rise to stable endogenous expression of the TH gene. The transient phase is, however, not specific to catecholaminergic neurons, a feature taken to advantage here as it enabled Vglut2 gene targeting within all three A10 populations expressing this gene, thus creating a new conditional knockout. These knockout mice showed impairment in spatial memory function. Electrophysiological analyses revealed a profound alteration of oscillatory activity in the CA3 region of the hippocampus. In addition to identifying a novel role for Vglut2 in hippocampus function, this study points to the need for improved genetic tools for targeting of the diversity of subpopulations of the A10 area
Resumo:
Three populations of neurons expressing the vesicular glutamate transporter 2 (Vglut2) were recently described in the A10 area of the mouse midbrain, of which two populations were shown to express the gene encoding, the rate-limiting enzyme for catecholamine synthesis, tyrosine hydroxylase (TH).One of these populations (‘‘TH– Vglut2 Class1’’) also expressed the dopamine transporter (DAT) gene while one did not ("TH–Vglut2 Class2"), and the remaining population did not express TH at all ("TH-Vglut2-only"). TH is known to be expressed by a promoter which shows two phases of activation, a transient one early during embryonal development, and a later one which gives rise to stable endogenous expression of the TH gene. The transient phase is, however, not specific to catecholaminergic neurons, a feature taken to advantage here as it enabled Vglut2 gene targeting within all three A10 populations expressing this gene, thus creating a new conditional knockout. These knockout mice showed impairment in spatial memory function. Electrophysiological analyses revealed a profound alteration of oscillatory activity in the CA3 region of the hippocampus. In addition to identifying a novel role for Vglut2 in hippocampus function, this study points to the need for improved genetic tools for targeting of the diversity of subpopulations of the A10 area
Resumo:
Landscape characteristics, disturbances, and temporal variability influence predator-prey relationships, but are often overlooked in experimental studies. In the Everglades, seasonal disturbances force the spatial overlap of predators and prey, potentially increasing predation risk for prey. This study examined seasonal and diel patterns of fish use of canals and assessed predation risk for small fishes using an encounter rate model. I deployed an imaging sonar in Everglades canals to quantify density and swimming speeds of fishes, and detect anti-predator behaviors by small fishes. Generally, seasonal declines of marsh water-levels increased the density of large fishes in canals. Densities of small and large fishes were positively correlated and, as small-fish density increased, schooling frequency also increased. At night, schools disbanded and small fishes were observed congregating along the canal edge. The encounter rate model predicted highest predator-prey encounters during the day, but access to cover may reduce predation risk for small fishes.
Resumo:
We recorded the number of terrestrial mammal species in each Argentinian province, and the number of species belonging to particular groups (Marsupialia, Placentaria, and among the latter, Xenarthra, Carnivora, Ungulates and Rodentia). We performed multiple regressions of each group’s SR on environmental, human and spatial variables, to determine the amounts of variation explained by these factors. We then used a variance partitioning procedure to specify which proportion of the variation in SR is explained by each of the three factors exclusively and which proportions are attributable to interactions between factors.
Resumo:
An important approach to cancer therapy is the design of small molecule modulators that interfere with microtubule dynamics through their specific binding to the ²-subunit of tubulin. In the present work, comparative molecular field analysis (CoMFA) studies were conducted on a series of discodermolide analogs with antimitotic properties. Significant correlation coefficients were obtained (CoMFA(i), q² =0.68, r²=0.94; CoMFA(ii), q² = 0.63, r²= 0.91), indicating the good internal and external consistency of the models generated using two independent structural alignment strategies. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the 3D contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of discodermolide analogs, and should be useful for the design of new specific ²-tubulin modulators with potent anticancer activity.
Resumo:
Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB) spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.