927 resultados para spare part analysis
Resumo:
In this paper, a thermoeconomic functional analysis method based on the Second Law of Thermodynamics and applied to analyze four cogeneration systems is presented. The objective of the developed technique is to minimize the operating costs of the cogeneration plant, namely exergetic production cost (EPC), assuming fixed rates of electricity production and process steam in exergy base. In this study a comparison is made between the same four configurations of part I. The cogeneration system consisting of a gas turbine with a heat recovery steam generator, without supplementary firing, has the lowest EPC. (C) 2004 Published by Elsevier Ltd.
Resumo:
In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Research of advanced technologies for energy generation contemplates a series of alternatives that are introduced both in the investigation of new energy sources and in the improvement and/or development of new components and systems. Even though significant reductions are observed in the amount of emissions, the proposed alternatives require the use of exhaust gases cleaning systems. The results of environmental analyses based on two configurations proposed for urban waste incineration are presented in this paper; the annexation of integer (Boolean) variables to the environomic model makes it possible to define the best gas cleaning routes based on exergetic cost minimisation criteria. In this first part, the results for steam cogeneration system analysis associated with the incineration of municipal solid wastes (MSW) is presented. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This article presents a thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum Exergetic Production Cost (EPC), based on the Second Law of Thermodynamics. The variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as final output. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work is to study the local impact on the upper troposphere/lower stratosphere air composition of an extreme deep convective system. For this purpose, we performed a simulation of a convective cluster composed of many individual deep convective cells that occurred near Bauru (Brazil). The simulation is performed using the 3-D mesoscale model RAMS coupled on-line with a chemistry model. The comparisons with meteorological measurements show that the model produces meteorological fields generally consistent with the observations. The present paper (part I) is devoted to the analysis of the ozone precursors (CO, NO x and non-methane volatile organic compounds) and HO x in the UTLS. The simulation results show that the distribution of CO with altitude is closely related to the upward convective motions and consecutive outflow at the top of the convective cells leading to a bulge of CO between 7 km altitude and the tropopause (around 17km altitude). The model results for CO are consistent with satellite-borne measurements at 700 hPa. The simulation also indicates enhanced amounts of NO x up to 2 ppbv in the 7-17 km altitude layer mainly produced by the lightning associated with the intense convective activity. For insoluble non-methane volatile organic compounds, the convective activity tends to significantly increase their amount in the 7-17km layer by dynamical effects. During daytime in the presence of lightning NO x, this bulge is largely reduced in the upper part of the layer for reactive species (e.g. isoprene, ethene) because of their reactions with OH that is increased on average during daytime. Lightning NO x also impacts on the oxydizing capacity of the upper troposphere by reducing on average HO x, HO 2, H 2O 2 and organic hydroperoxides. During the simulation time, the impact of convection on the air composition of the lower stratosphere is negligible for all ozone precursors although several of the simulated convective cells nearly reach the tropopause. There is no significant transport from the upper troposphere to the lower stratosphere, the isentropic barrier not being crossed by convection. The impact of the increase of ozone precursors and HO x in the upper troposphere on the ozone budget in the LS is discussed in part II of this series of papers.
Resumo:
The dynamical system investigated in this work is a nonlinear flexible beam-like structure in slewing motion. Non-dimensional and perturbed governing equations of motion are presented. The analytical solution for the linear part of these perturbed equations for ideal and for non-ideal cases are obtained. This solution is necessary for the investigation of the complete weak nonlinear problem where all nonlinearities are small perturbations around a linear known solution. This investigation shall help the analyst in the modelling of dynamical systems with structure- actuator interactions.
Resumo:
This paper investigates the major similarities and discrepancies among three important current decompositions proposed for the interpretation of unbalanced and/or non linear three-phase four-wire power circuits. The considered approaches were the so-called FBD Theory, the pq-Theory and the CPT. Although the methods are based on different concepts, the results obtained under ideal conditions (sinusoidal and balanced signals) are very similar. The main differences appear in the presence of unbalanced and non linear load conditions. It will be demonstrated and discussed how the choice of the voltage referential and the return conductor impedance can influence in the resulting current components, as well as, the way of interpreting a power circuit with return conductor. Under linear unbalanced conditions, both FBD and pq-Theory suggest that the some current components contain a third-order harmonic. Besides, neither pq-Theory nor FBD method are able to provide accurate information for reactive current under unbalanced and distorted conditions, what can be done by means of the CPT. © 2009 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The compounds [NiX 2(PPh 3) 2] (where X is Cl -, Br -, I -, NO - 3, NCS -; and PPh 3 is triphenylphosphine) were prepared and characterized by infrared and atomic absorption spectroscopies and by carbon and hydrogen analyses. Simultaneous thermogravimetric (TG) and derivative thermogravimetric (DTG) curves of these complexes were recorded in air. The decrease in mass observed indicates conversion of the complexes to oxides. The thermal decomposition of the halogen and nitrate complexes occurred in a number of steps; the thiocyanate complex decomposed in a single step. © 1994.
Resumo:
Studies by thermogravimetric analysis (TG) and differential thermal analysis (DTA) of the complexes [PtCl2L2] (L is PPh3, AsPh3, SbPh3), [PtLn] (n = 3, L is SbPh3; n = 4, L is PPh3, AsPh3); [(PtL3)2N2]; [(PtL3)2C2] and [Pt(CO)2L2] (L is SbPh3) are described. Analysis of the TG and DTA curves showed that Pt(II) complexes of the type [PtCl2L2] have a higher thermal stability than the corresponding Pt(0) complexes of the type [PtLn], with the exception of [Pt(SbPh3)3], which is more stable than [PtCl2(SbPh3)2]. Thermal stabilities of each of the complexes are compared with those of the others in the series. Mechanisms of thermal decomposition of complexes of the types [PtCl2L2] and [PtLn] are proposed. Residues of the samples were characterized by chemical tests and IR spectroscopy. The residue from the thermal decomposition of [PtCl2L2] (L is PPh3, AsPh3) and [Pt(PPh3)4] is metallic platinum. For [Pt(AsPh3)4] the residue is a mixture of Pt and As, whereas for the complexes containing SbPh3 the residues are mixtures of Pt and Sb. In these cases, the proportional contents of Pt and As or Pt and Sb correspond to the stoichiometry of these elements in the respective complexes. The complexes {[Pt(SbPh3)3]2N2}, {[Pt(SbPh3)3]2C2} lose N2 or the ethynediyl group at 130-150°C and are transformed into [Pt(SbPh3)3]. © 1995.