900 resultados para space radiation environment
Resumo:
This work focuses on the analysis of the influence of environment on the relative biological effectiveness (RBE) of carbon ions on molecular level. Due to the high relevance of RBE for medical applications, such as tumor therapy, and radiation protection in space, DNA damages have been investigated in order to understand the biological efficiency of heavy ion radiation. The contribution of this study to the radiobiology research consists in the analysis of plasmid DNA damages induced by carbon ion radiation in biochemical buffer environments, as well as in the calculation of the RBE of carbon ions on DNA level by mean of scanning force microscopy (SFM). In order to study the DNA damages, besides the common electrophoresis method, a new approach has been developed by using SFM. The latter method allows direct visualisation and measurement of individual DNA fragments with an accuracy of several nanometres. In addition, comparison of the results obtained by SFM and agarose gel electrophoresis methods has been performed in the present study. Sparsely ionising radiation, such as X-rays, and densely ionising radiation, such as carbon ions, have been used to irradiate plasmid DNA in trishydroxymethylaminomethane (Tris buffer) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES buffer) environments. These buffer environments exhibit different scavenging capacities for hydroxyl radical (HO0), which is produced by ionisation of water and plays the major role in the indirect DNA damage processes. Fragment distributions have been measured by SFM over a large length range, and as expected, a significantly higher degree of DNA damages was observed for increasing dose. Also a higher amount of double-strand breaks (DSBs) was observed after irradiation with carbon ions compared to X-ray irradiation. The results obtained from SFM measurements show that both types of radiation induce multiple fragmentation of the plasmid DNA in the dose range from D = 250 Gy to D = 1500 Gy. Using Tris environments at two different concentrations, a decrease of the relative biological effectiveness with the rise of Tris concentration was observed. This demonstrates the radioprotective behavior of the Tris buffer solution. In contrast, a lower scavenging capacity for all other free radicals and ions, produced by the ionisation of water, was registered in the case of HEPES buffer compared to Tris solution. This is reflected in the higher RBE values deduced from SFM and gel electrophoresis measurements after irradiation of the plasmid DNA in 20 mM HEPES environment compared to 92 mM Tris solution. These results show that HEPES and Tris environments play a major role on preventing the indirect DNA damages induced by ionising radiation and on the relative biological effectiveness of heavy ion radiation. In general, the RBE calculated from the SFM measurements presents higher values compared to gel electrophoresis data, for plasmids irradiated in all environments. Using a large set of data, obtained from the SFM measurements, it was possible to calculate the survive rate over a larger range, from 88% to 98%, while for gel electrophoresis measurements the survive rates have been calculated only for values between 96% and 99%. While the gel electrophoresis measurements provide information only about the percentage of plasmids DNA that suffered a single DSB, SFM can count the small plasmid fragments produced by multiple DSBs induced in a single plasmid. Consequently, SFM generates more detailed information regarding the amount of the induced DSBs compared to gel electrophoresis, and therefore, RBE can be calculated with more accuracy. Thus, SFM has been proven to be a more precise method to characterize on molecular level the DNA damage induced by ionizing radiations.
Resumo:
Films of piezoelectric PVDF and P(VDF-TrFE) were exposed to vacuum UV (115-300 nm VUV) and -radiation to investigate how these two forms of radiation affect the chemical, morphological, and piezoelectric properties of the polymers. The extent of crosslinking was almost identical in both polymers after -irradiation, but surprisingly, was significantly higher for the TrFE copolymer after VUV-irradiation. Changes in the melting behavior were also more significant in the TrFE copolymer after VUV-irradiation due to both surface and bulk crosslinking, compared with only surface crosslinking for the PVDF films. The piezoelectric properties (measured using d33 piezoelectric coefficients and D-E hysteresis loops) were unchanged in the PVDF homopolymer, while the TrFE copolymer exhibited more narrow D-E loops after exposure to either - or VUV-radiation. The more severe damage to the TrFE copolymer in comparison with the PVDF homopolymer after VUV-irradiation is explained by different energy deposition characteristics. The short wavelength, highly energetic photons are undoubtedly absorbed in the surface layers of both polymers, and we propose that while the longer wavelength components of the VUV-radiation are absorbed by the bulk of the TrFE copolymer causing crosslinking, they are transmitted harmlessly in the PVDF homopolymer.
Resumo:
Poly(vinylidene fluoride) and copolymers of vinylidene fluoride with hexafluoropropylene, trifluoroethylene and chlorotrifluoroethylene have been exposed to gamma irradiation in vacuum, up to doses of 1MGy under identical conditions, to obtain a ranking of radiation sensitivities. Changes in the tensile properties, crystalline melting points,heats of fusion, gel contents and solvent uptake factors were used as the defining parameters. The initial degree of crystallinity and film processing had the greatest influence on relative radiation damage, although the cross-linked network features were almost identical in their solvent swelling characteristics, regardless of the comonomer composition or content.
Resumo:
The effects of atomic oxygen (AO) and vacuum UV radiation simulating low Earth orbit conditions on two commercially available piezoelectric polymer films, poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE), have been studied. Surface erosion and pattern development are significant for both polymers. Erosion yields were determined as 2.8 � 10�24 cm3/atom for PVDF and 2.5 � 10�24 cm3/atom for P(VDF-TrFE). The piezoelectric properties of the residual material of both polymers were largely unchanged after exposure, although a slight shift in the Curie transition of the P(VDF-TrFE) was observed. A lightly cross-linked network was formed in the copolymer presumably because of penetrating vacuum ultraviolet (VUV) radiation, while the homopolymer remained uncross-linked. These differences were attributed to varying degrees of crystallinity and potentially greater absorption, and hence damage, of VUV radiation in P(VDFTrFE) compared with PVDF.
Resumo:
Various piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films depend on charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to deteriorate owing to strong vacuum UV, � -, X-ray, energetic particles and atomic oxygen exposure. We have investigated the degradation of PVDF and its copolymers under various stress environments detrimental to reliable operation in space. Initial radiation aging studies have shown complex material changes with lowered Curie temperatures, complex material changes with lowered melting points, morphological transformations and significant crosslinking, but little influence on piezoelectric d33 constants. Complex aging processes have also been observed in accelerated temperature environments inducing annealing phenomena and cyclic stresses. The results suggest that poling and chain orientation are negatively affected by radiation and temperature exposure. A framework for dealing with these complex material qualification issues and overall system survivability predictions in low earth orbit conditions has been established. It allows for improved material selection, feedback for manufacturing and processing, material optimization/stabilization strategies and provides guidance on any alternative materials.
Resumo:
Cities have long held a fascination for people – as they grow and develop, there is a desire to know and understand the intricate interplay of elements that makes cities ‘live’. In part, this is a need for even greater efficiency in urban centres, yet the underlying quest is for a sustainable urban form. In order to make sense of the complex entities that we recognise cities to be, they have been compared to buildings, organisms and more recently machines. However the search for better and more elegant urban centres is hardly new, healthier and more efficient settlements were the aim of Modernism’s rational sub-division of functions, which has been translated into horizontal distribution through zoning, or vertical organisation thought highrise developments. However both of these approaches have been found to be unsustainable, as too many resources are required to maintain this kind or urbanisation and social consequences of either horizontal or vertical isolation must also be considered. From being absolute consumers of resources, of energy and of technology, cities need to change, to become sustainable in order to be more resilient and more efficient in supporting culture, society as well as economy. Our urban centres need to be re-imagined, re-conceptualised and re-defined, to match our changing society. One approach is to re-examine the compartmentalised, mono-functional approach of urban Modernism and to begin to investigate cities like ecologies, where every element supports and incorporates another, fulfilling more than just one function. This manner of seeing the city suggests a framework to guide the re-mixing of urban settlements. Beginning to understand the relationships between supporting elements and the nature of the connecting ‘web’ offers an invitation to investigate the often ignored, remnant spaces of cities. This ‘negative space’ is the residual from which space and place are carved out in the Contemporary city, providing the link between elements of urban settlement. Like all successful ecosystems, cities need to evolve and change over time in order to effectively respond to different lifestyles, development in culture and society as well as to meet environmental challenges. This paper seeks to investigate the role that negative space could have in the reorganisation of the re-mixed city. The space ‘in-between’ is analysed as an opportunity for infill development or re-development which provides to the urban settlement the variety that is a pre-requisite for ecosystem resilience. An analysis of the urban form is suggested as an empirical tool to map the opportunities already present in the urban environment and negative space is evaluated as a key element in achieving a positive development able to distribute diverse environmental and social facilities in the city.
Resumo:
In the current climate of global economic volatility, there are increasing calls for training in enterprising skills and entrepreneurship to underpin the systemic innovation required for even medium-term business sustainability. The skills long-recognised as the essential for entrepreneurship now appear on the list of employability skills demanded by industry. The QUT Innovation Space (QIS) was an experiment aimed at delivering entrepreneurship education (EE), as an extra-curricular platform across the university, to the undergraduate students of an Australian higher education institute. It was an ambitious project that built on overseas models of EE studied during an Australian Learning and Teaching Council (ALTC) Teaching Fellowship (Collet, 2011) and implemented those approaches across an institute. Such EE approaches have not been attempted in an Australian university. The project tested resonance not only with the student population, from the perspective of what worked and what didn’t work, but also with every level of university operations. Such information is needed to inform the development of EE in the Australian university landscape. The QIS comprised a physical co-working space, virtual sites (web, Twitter and Facebook) and a network of entrepreneurial mentors, colleagues, and students. All facets of the QIS enabled connection between like-minded individuals that underpins the momentum needed for a project of this nature. The QIS became an innovation community within QUT. This report serves two purposes. First, as an account of the QIS project and its evolution, the report serves to identify the student demand for skills and training as well as barriers and facilitators of the activities that promote EE in an Australian university context. Second, the report serves as a how-to manual, in the tradition of many tomes on EE, outlining the QIS activities that worked as well as those that failed. The activities represent one measure of QIS outcomes and are described herein to facilitate implementation in other institutes. The QIS initially aimed to adopt an incubation model for training in EE. The ‘learning by doing’ model for new venture creation is a highly successful and high profile training approach commonly found in overseas contexts. However, the greatest demand of the QUT student population was not for incubation and progression of a developed entrepreneurial intent, but rather for training that instilled enterprising skills in the individual. These two scenarios require different training approaches (Fayolle and Gailly, 2008). The activities of the QIS evolved to meet that student demand. In addressing enterprising skills, the QIS developed the antecedents of entrepreneurialism (i.e., entrepreneurial attitudes, motivation and behaviours) including high-level skills around risk-taking, effective communication, opportunity recognition and action-orientation. In focusing on the would-be entrepreneur and not on the (initial) idea per se, the QIS also fostered entrepreneurial outcomes that would never have gained entry to the rigid stage-gated incubation model proposed for the original QIS framework. Important lessons learned from the project for development of an innovation community include the need to: 1. Evaluate the context of the type of EE program to be delivered and the student demand for the skills training (as noted above). 2. Create a community that builds on three dimensions: a physical space, a virtual environment and a network of mentors and partners. 3. Supplement the community with external partnerships that aid in delivery of skills training materials. 4. Ensure discovery of the community through the use of external IT services to deliver advertising and networking outlets. 5. Manage unrealistic student expectations of billion dollar products. 6. Continuously renew and rebuild simple activities to maintain student engagement. 7. Accommodate the non-university end-user group within the community. 8. Recognise and address the skills bottlenecks that serve as barriers to concept progression; in this case, externally provided IT and programming skills. 9. Use available on-line and published resources rather than engage in constructing project-specific resources that quickly become obsolete. 10. Avoid perceptions of faculty ownership and operate in an increasingly competitive environment. 11. Recognise that the continuum between creativity/innovation and entrepreneurship is complex, non-linear and requires different training regimes during the different phases of the pipeline. One small entity, such as the QIS, cannot address them all. The QIS successfully designed, implemented and delivered activities that included events, workshops, seminars and services to QUT students in the extra-curricular space. That the QIS project can be considered successful derives directly from the outcomes. First, the QIS project changed the lives of emerging QUT student entrepreneurs. Also, the QIS activities developed enterprising skills in students who did not necessarily have a business proposition, at the time. Second, successful outcomes of the QIS project are evidenced as the embedding of most, perhaps all, of the QIS activities in a new Chancellery-sponsored initiative: the Leadership Development and Innovation Program hosted by QUT Student Support Services. During the course of the QIS project, the Brisbane-based innovation ecosystem underwent substantial change. From a dearth of opportunities for the entrepreneurially inclined, there is now a plethora of entities that cater for a diversity of innovation-related activities. While the QIS evolved with the landscape, the demand endpoint of the QIS activities still highlights a gap in the local and national innovation ecosystems. The freedom to experiment and to fail is not catered for by the many new entities seeking to build viable businesses on the back of the innovation push. The onus of teaching the enterprising skills, which are the employability skills now demanded by industry, remains the domain of the higher education sector.
Resumo:
The environments that we inhabit shape our everyday lives, influencing our behaviors and responses (Manu, 2013). As we enter an immersive phase of education in which physical and digital environments become inseparable, should we reconsider the role and importance of design on pedagogical practice? This paper explores the reciprocal cause and effect of space, technology and pedagogy in shaping the design of educational experiences within Queensland University of Technology's collaborative learning spaces.
Resumo:
Asoftware-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students’ understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 %of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of ‘‘invisible’’ physical principles and increased opportunity for experimentation and collaborative problembased learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts.
Resumo:
Solar UV radiation is harmful for life on planet Earth, but fortunately the atmospheric oxygen and ozone absorb almost entirely the most energetic UVC radiation photons. However, part of the UVB radiation and much of the UVA radiation reaches the surface of the Earth, and affect human health, environment, materials and drive atmospheric and aquatic photochemical processes. In order to quantify these effects and processes there is a need for ground-based UV measurements and radiative transfer modeling to estimate the amounts of UV radiation reaching the biosphere. Satellite measurements with their near-global spatial coverage and long-term data conti-nuity offer an attractive option for estimation of the surface UV radiation. This work focuses on radiative transfer theory based methods used for estimation of the UV radiation reaching the surface of the Earth. The objectives of the thesis were to implement the surface UV algorithm originally developed at NASA Goddard Space Flight Center for estimation of the surface UV irradiance from the meas-urements of the Dutch-Finnish built Ozone Monitoring Instrument (OMI), to improve the original surface UV algorithm especially in relation with snow cover, to validate the OMI-derived daily surface UV doses against ground-based measurements, and to demonstrate how the satellite-derived surface UV data can be used to study the effects of the UV radiation. The thesis consists of seven original papers and a summary. The summary includes an introduction of the OMI instrument, a review of the methods used for modeling of the surface UV using satellite data as well as the con-clusions of the main results of the original papers. The first two papers describe the algorithm used for estimation of the surface UV amounts from the OMI measurements as well as the unique Very Fast Delivery processing system developed for processing of the OMI data received at the Sodankylä satellite data centre. The third and the fourth papers present algorithm improvements related to the surface UV albedo of the snow-covered land. Fifth paper presents the results of the comparison of the OMI-derived daily erythemal doses with those calculated from the ground-based measurement data. It gives an estimate of the expected accuracy of the OMI-derived sur-face UV doses for various atmospheric and other conditions, and discusses the causes of the differences between the satellite-derived and ground-based data. The last two papers demonstrate the use of the satellite-derived sur-face UV data. Sixth paper presents an assessment of the photochemical decomposition rates in aquatic environment. Seventh paper presents use of satellite-derived daily surface UV doses for planning of the outdoor material weathering tests.
Resumo:
Writing has long played an important role in the progression of architecture and the built environment. Histories of architecture are written, manifestoes that form the basis for a designer’s work are written and most importantly, the built environment advances itself through the act of critical writing. Not unlike the visual arts, literature and poetry, the tradition of written criticism has been crucial to the progression of architecture and its allied professions (Franz 2003). This article contributes to architecture and the built environment through the act of a written essay that critiques the problem of bodily diversity to architecture. In particular, the article explores the implications of body-space politics and abstracted body thinking on diverse bodies and their spatial justice. Using Soja’s Spatial Justice theory (2008), we seek to point out the underlying conceptions and power differentials assigned to different bodies spatially and how this leads to spatial injustices and contested spaces. The article also critically analyses the historical emergence of ‘the standardised body’ in architecture and its application in design theory and practice , and looks at how bodies often found on the outside of architecture highlight how such thinking creates in justices. Different theories are drawn on to help point to how design through the use of the upright, forward facing, male bod willingly and unwillingly denies access to resources and spatialities of everyday life. We also suggest ways to re-conceptualise the body in design practice and teaching.
Resumo:
The aim of this thesis was to study ecology of Baltic Sea ice from two perspectives. In the first two studies, sea-ice ecology from riverine-influenced fast ice to drift ice in the Bothnian Bay was investigated, whereas the last two studies focus on the sensitivity of sea-ice bacteria and algae to UVA examined in situ. The seasonal sea ice cover is one of the main characteristics of the Baltic Sea, and despite the brackish parental water, the ice structure is similar to polar ice with saline brine inclusions, the sea ice habitat. The decreasing seawater salinity from the northern Baltic Sea to the Bothnian Bay translates to decreasing brine volumes along the gradient, governing the size and community structure of the food webs in ice. However, the drift and fast ice in the Bothnian Bay may differ greatly in this sense, as drift ice may have been formed at more southern locations. Rafting and the formation of snow ice are common processes in the ice field of the Bothnian Bay. As evidenced in this thesis, rafting altered the vertical distribution of organisms and snow-ice formation provided habitable space in the better-illuminated, nitrogen-rich surface layer. The divergence between fast and drift ice became apparent at the more advanced stages, and chlorophyte biomass decreased from fast to drift ice, while the opposite held true for protozoan and metazoan biomass. The brine volumes affected the communities somewhat, and a higher percentage of flagellate species was generally linked to lower brine volumes, whereas chain-forming diatoms were mostly concentrated in layers with larger brine volumes. These results add to knowledge of the ecological significance of the ice cover lasting up to 7 months per year in this area. Sea-ice food webs are generally light-limited, but while increasing light irradiances typically enhance the primary production and further, the secondary production in sea ice, any increase in solar radiation also includes an increase in harmful UVA radiation. The Baltic Sea ice microbial communities were clearly sensitive to UVA and the responses were strongly linked to the earlier light history, as well as to the solar irradiances they were exposed to. The increased biomass of chlorophytes and pennate diatoms, when UVA was excluded, indicates that their normally minor contribution to the biomass in the upper layers of sea ice might be partly dictated by UVA. The effects of UVA on bacterial production in Baltic Sea ice mostly followed the responses in algal growth, but occasionally the exposure to UVA even enhanced the bacterial production. The dominant bacterial class, Flavobacteria, seemed to be UVA-tolerant, whereas all the Alpha-, Beta- and Gammaproteobacteria present in the surface layer showed UVA sensitivity. These results indicate that changes in the light field of ice may alter the community structure and affect the functioning of ice food webs, and are of importance when the effects of thinning of the ice cover are assessed.
Resumo:
The seasonality and mutual dependence of aerosol optical properties and cloud condensation nuclei (CCN) activity under varying meteorological conditions at the high-altitude Nainital site (2km) in the Indo-Gangetic Plains were examined using nearly year-round measurements (June 2011 to March 2012) at the Atmospheric Radiation Measurement mobile facility as part of the Regional Aerosol Warming Experiment-Ganges Valley Aerosol Experiment of the Indian Space Research Organization and the U.S. Department of Energy. The results from collocated measurements provided enhanced aerosol scattering and absorption coefficients, CCN concentrations, and total condensation nuclei concentrations during the dry autumn and winter months. The CCN concentration (at a supersaturation of 0.46) was higher during the periods of high aerosol absorption (single scattering albedo (SSA)<0.80) than during the periods of high aerosol scattering (SSA>0.85), indicating that the aerosol composition seasonally changes and influences the CCN activity. The monthly mean CCN activation ratio (at a supersaturation of 0.46) was highest (>0.7) in late autumn (November); this finding is attributed to the contribution of biomass-burning aerosols to CCN formation at high supersaturation conditions.