918 resultados para sonic object


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of Trusted Platform Module (TPM) is be- coming increasingly popular in many security sys- tems. To access objects protected by TPM (such as cryptographic keys), several cryptographic proto- cols, such as the Object Specific Authorization Pro- tocol (OSAP), can be used. Given the sensitivity and the importance of those objects protected by TPM, the security of this protocol is vital. Formal meth- ods allow a precise and complete analysis of crypto- graphic protocols such that their security properties can be asserted with high assurance. Unfortunately, formal verification of these protocols are limited, de- spite the abundance of formal tools that one can use. In this paper, we demonstrate the use of Coloured Petri Nets (CPN) - a type of formal technique, to formally model the OSAP. Using this model, we then verify the authentication property of this protocol us- ing the state space analysis technique. The results of analysis demonstrates that as reported by Chen and Ryan the authentication property of OSAP can be violated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the unsupervised learning of object representations by fusing visual and motor information. The problem is posed for a mobile robot that develops its representations as it incrementally gathers data. The scenario is problematic as the robot only has limited information at each time step with which it must generate and update its representations. Object representations are refined as multiple instances of sensory data are presented; however, it is uncertain whether two data instances are synonymous with the same object. This process can easily diverge from stability. The premise of the presented work is that a robot's motor information instigates successful generation of visual representations. An understanding of self-motion enables a prediction to be made before performing an action, resulting in a stronger belief of data association. The system is implemented as a data-driven partially observable semi-Markov decision process. Object representations are formed as the process's hidden states and are coordinated with motor commands through state transitions. Experiments show the prediction process is essential in enabling the unsupervised learning method to converge to a solution - improving precision and recall over using sensory data alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a segmentation pipeline that fuses colour and depth information to automatically separate objects of interest in video sequences captured from a quadcopter. Many approaches assume that cameras are static with known position, a condition which cannot be preserved in most outdoor robotic applications. In this study, the authors compute depth information and camera positions from a monocular video sequence using structure from motion and use this information as an additional cue to colour for accurate segmentation. The authors model the problem similarly to standard segmentation routines as a Markov random field and perform the segmentation using graph cuts optimisation. Manual intervention is minimised and is only required to determine pixel seeds in the first frame which are then automatically reprojected into the remaining frames of the sequence. The authors also describe an automated method to adjust the relative weights for colour and depth according to their discriminative properties in each frame. Experimental results are presented for two video sequences captured using a quadcopter. The quality of the segmentation is compared to a ground truth and other state-of-the-art methods with consistently accurate results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an unsupervised graph cut based object segmentation method using 3D information provided by Structure from Motion (SFM), called Grab- CutSFM. Rather than focusing on the segmentation problem using a trained model or human intervention, our approach aims to achieve meaningful segmentation autonomously with direct application to vision based robotics. Generally, object (foreground) and background have certain discriminative geometric information in 3D space. By exploring the 3D information from multiple views, our proposed method can segment potential objects correctly and automatically compared to conventional unsupervised segmentation using only 2D visual cues. Experiments with real video data collected from indoor and outdoor environments verify the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conservation of free-ranging cheetah (Acinonyx jubatus) populations is multi faceted and needs to be addressed from an ecological, biological and management perspective. There is a wealth of published research, each focusing on a particular aspect of cheetah conservation. Identifying the most important factors, making sense of various (and sometimes contrasting) findings, and taking decisions when little or no empirical data is available, are everyday challenges facing conservationists. Bayesian networks (BN) provide a statistical modeling framework that enables analysis and integration of information addressing different aspects of conservation. There has been an increased interest in the use of BNs to model conservation issues, however the development of more sophisticated BNs, utilizing object-oriented (OO) features, is still at the frontier of ecological research. We describe an integrated, parallel modeling process followed during a BN modeling workshop held in Namibia to combine expert knowledge and data about free-ranging cheetahs. The aim of the workshop was to obtain a more comprehensive view of the current viability of the free-ranging cheetah population in Namibia, and to predict the effect different scenarios may have on the future viability of this free-ranging cheetah population. Furthermore, a complementary aim was to identify influential parameters of the model to more effectively target those parameters having the greatest impact on population viability. The BN was developed by aggregating diverse perspectives from local and independent scientists, agents from the national ministry, conservation agency members and local fieldworkers. This integrated BN approach facilitates OO modeling in a multi-expert context which lends itself to a series of integrated, yet independent, subnetworks describing different scientific and management components. We created three subnetworks in parallel: a biological, ecological and human factors network, which were then combined to create a complete representation of free-ranging cheetah population viability. Such OOBNs have widespread relevance to the effective and targeted conservation management of vulnerable and endangered species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information experience has emerged as a new and dynamic field of information research in recent years. This chapter will discuss and explore information experience in two distinct ways: (a) as a research object, and; (b) as a research domain. Two recent studies will provide the context for this exploration. The first study investigated the information experiences of people using social media (e.g., Facebook, Twitter, YouTube) during natural disasters. Data was gathered by in-depth semi-structured interviews with 25 participants, from two areas affected by natural disasters (i.e., Brisbane and Townsville). The second study investigated the qualitatively different ways in which people experienced information literacy during a natural disaster. Using phenomenography, data was collected via semi-structured interviews with 7 participants. These studies represent two related yet different investigations. Taken together the studies provide a means to critically debate and reflect upon our evolving understandings of information experience, both as a research object and as a research domain. This chapter presents our preliminary reflections and concludes that further research is needed to develop and strengthen our conceptualisation of this emerging area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Object classification is plagued by the issue of session variation. Session variation describes any variation that makes one instance of an object look different to another, for instance due to pose or illumination variation. Recent work in the challenging task of face verification has shown that session variability modelling provides a mechanism to overcome some of these limitations. However, for computer vision purposes, it has only been applied in the limited setting of face verification. In this paper we propose a local region based intersession variability (ISV) modelling approach, and apply it to challenging real-world data. We propose a region based session variability modelling approach so that local session variations can be modelled, termed Local ISV. We then demonstrate the efficacy of this technique on a challenging real-world fish image database which includes images taken underwater, providing significant real-world session variations. This Local ISV approach provides a relative performance improvement of, on average, 23% on the challenging MOBIO, Multi-PIE and SCface face databases. It also provides a relative performance improvement of 35% on our challenging fish image dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical design objects such as sketches, drawings, collages, storyboards and models play an important role in supporting communication and coordination in design studios. CAM (Cooperative Artefact Memory) is a mobile-tagging based messaging system that allows designers to collaboratively store relevant information onto their design objects in the form of messages, annotations and external web links. We studied the use of CAM in a Product Design studio over three weeks, involving three different design teams. In this paper, we briefly describe CAM and show how it serves as 'object memory'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel approach for multi-object detection in aerial videos based on tracking. The proposed method mainly involves three steps. Firstly, the spatial-temporal saliency is employed to detect moving objects. Secondly, the detected objects are tracked by mean shift in the subsequent frames. Finally, the saliency results are fused with the weight map generated by tracking to get refined detection results, and in turn the modified detection results are used to update the tracking models. The proposed algorithm is evaluated on VIVID aerial videos, and the results show that our approach can reliably detect moving objects even in challenging situations. Meanwhile, the proposed method can process videos in real time, without the effect of time delay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the problem of moving object detection in aerial video is addressed. While motion cues have been extensively exploited in the literature, how to use spatial information is still an open problem. To deal with this issue, we propose a novel hierarchical moving target detection method based on spatiotemporal saliency. Temporal saliency is used to get a coarse segmentation, and spatial saliency is extracted to obtain the object’s appearance details in candidate motion regions. Finally, by combining temporal and spatial saliency information, we can get refined detection results. Additionally, in order to give a full description of the object distribution, spatial saliency is detected in both pixel and region levels based on local contrast. Experiments conducted on the VIVID dataset show that the proposed method is efficient and accurate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This practice-led research project explores the possibilities for restaging and reconfiguring contemporary art installations in multiple and different locations. By exploring ideas and art that demonstrate a kaleidoscopic approach to creative practice, this project examines how analysing artists' particular processes can achieve new understandings and experiences of installation art. This project achieves this through reflection on, and analysis of creative works made throughout the research, and a critical examination of contemporary art practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A robust visual tracking system requires an object appearance model that is able to handle occlusion, pose, and illumination variations in the video stream. This can be difficult to accomplish when the model is trained using only a single image. In this paper, we first propose a tracking approach based on affine subspaces (constructed from several images) which are able to accommodate the abovementioned variations. We use affine subspaces not only to represent the object, but also the candidate areas that the object may occupy. We furthermore propose a novel approach to measure affine subspace-to-subspace distance via the use of non-Euclidean geometry of Grassmann manifolds. The tracking problem is then considered as an inference task in a Markov Chain Monte Carlo framework via particle filtering. Quantitative evaluation on challenging video sequences indicates that the proposed approach obtains considerably better performance than several recent state-of-the-art methods such as Tracking-Learning-Detection and MILtrack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an object-oriented world model for the road traffic environment of autonomous (driver-less) city vehicles. The developed World Model is a software component of the autonomous vehicle's control system, which represents the vehicle's view of its road environment. Regardless whether the information is a priori known, obtained through on-board sensors, or through communication, the World Model stores and updates information in real-time, notifies the decision making subsystem about relevant events, and provides access to its stored information. The design is based on software design patterns, and its application programming interface provides both asynchronous and synchronous access to its information. Experimental results of both a 3D simulation and real-world experiments show that the approach is applicable and real-time capable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated memories of room-sized spatial layouts learned by sequentially or simultaneously viewing objects from a stationary position. In three experiments, sequential viewing (one or two objects at a time) yielded subsequent memory performance that was equivalent or superior to simultaneous viewing of all objects, even though sequential viewing lacked direct access to the entire layout. This finding was replicated by replacing sequential viewing with directed viewing in which all objects were presented simultaneously and participants’ attention was externally focused on each object sequentially, indicating that the advantage of sequential viewing over simultaneous viewing may have originated from focal attention to individual object locations. These results suggest that memory representation of object-to-object relations can be constructed efficiently by encoding each object location separately, when those locations are defined within a single spatial reference system. These findings highlight the importance of considering object presentation procedures when studying spatial learning mechanisms.