969 resultados para solar cell arrays


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"No. 3 of a series of technical handbooks."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multibody dynamics of a satellite in circular orbit, modeled as a central body with two hinge-connected deployable solar panel arrays, is investigated. Typically, the solar panel arrays are deployed in orbit using preloaded torsional springs at the hinges in a near symmetrical accordion manner, to minimize the shock loads at the hinges. There are five degrees of freedom of the interconnected rigid bodies, composed of coupled attitude motions (pitch, yaw and roll) of the central body plus relative rotations of the solar panel arrays. The dynamical equations of motion of the satellite system are derived using Kane's equations. These are then used to investigate the dynamic behavior of the system during solar panel deployment via the 7-8th-order Runge-Kutta integration algorithms and results are compared with approximate analytical solutions. Chaotic attitude motions of the completely deployed satellite in circular orbit under the influence of the gravity-gradient torques are subsequently investigated analytically using Melnikov's method and confirmed via numerical integration. The Hamiltonian equations in terms of Deprit's variables are used to facilitate the analysis. (C) 2003 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple overview of the methods used and the expected benefits of block copolymers in organic photovoltaic devices is given in this review. The description of the photovoltaic process makes it clear how the detailed self-assembly properties of block copolymers can be exploited. Organic photovoltaic technology, an inexpensive, clean and renewable energy source, is an extremely promising option for replacing fossil fuels. It is expected to deliver printable devices processed on flexible substrates using high-volume techniques. Such devices, however, currently lack the long-term stability and efficiency to allow organic photovoltaics to surpass current technologies. Block copolymers are envisaged to help overcome these obstacles because of their long term structural stability and their solid-state morphology being of the appropriate dimensions to efficiently perform charge collection and transfer to electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthesis and functionalization of large-area graphene and its structural, electrical and electrochemical properties has been investigated. First, the graphene films, grown by thermal chemical vapor deposition (CVD), contain three to five atomic layers of graphene, as confirmed by Raman spectroscopy and high-resolution transmission electron microscopy. Furthermore, the graphene film is treated with CF4 reactive-ion plasma to dope fluorine ions into graphene lattice as confirmed by X-ray photoelectron spectroscopy (XPS) and UV-photoemission spectroscopy (UPS). Electrochemical characterization reveals that the catalytic activity of graphene for iodine reduction enhanced with increasing plasma treatment time, which is attributed to increase in catalytic sites of graphene for charge transfer. The fluorinated graphene is characterized as a counter-electrode (CE) in a dye-sensitized solar cell (DSSC) which shows ~ 2.56% photon to electron conversion efficiency with ~11 mAcm−2 current density. Second, the large scale graphene film is covalently functionalized with HNO3 for high efficiency electro-catalytic electrode for DSSC. The XPS and UPS confirm the covalent attachment of C-OH, C(O)OH and NO3- moieties with carbon atoms through sp2-sp3 hybridization and Fermi level shift of graphene occurs under different doping concentrations, respectively. Finally, CoS-implanted graphene (G-CoS) film was prepared using CVD followed by SILAR method. The G-CoS electro-catalytic electrodes are characterized in a DSSC CE and is found to be highly electro-catalytic towards iodine reduction with low charge transfer resistance (Rct ~5.05 Ωcm 2) and high exchange current density (J0~2.50 mAcm -2). The improved performance compared to the pristine graphene is attributed to the increased number of active catalytic sites of G-CoS and highly conducting path of graphene. We also studied the synthesis and characterization of graphene-carbon nanotube (CNT) hybrid film consisting of graphene supported by vertical CNTs on a Si substrate. The hybrid film is inverted and transferred to flexible substrates for its application in flexible electronics, demonstrating a distinguishable variation of electrical conductivity for both tension and compression. Furthermore, both turn-on field and total emission current was found to depend strongly on the bending radius of the film and were found to vary in ranges of 0.8 - 3.1 V/μm and 4.2 - 0.4 mA, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100–150 °C) might be the best choice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been demonstrated as an alternative technique to deposit conjugated polymer films for photovoltaic applications; yet, a fundamental understanding of how the emulsion target characteristics translate into film properties and solar cell performance is unclear. Such understanding is crucial to enable the rational improvement of organic solar cell (OSC) efficiency and to realize the expected advantages of emulsion-based RIR-MAPLE for OSC fabrication. In this paper, the effect of the primary solvent used in the emulsion target is studied, both experimentally and theoretically, and it is found to determine the conjugated polymer cluster size in the emulsion as well as surface roughness and internal morphology of resulting polymer films. By using a primary solvent with low solubility-in-water and low vapor pressure, the surface roughness of deposited P3HT and PCPDTBT polymer films was reduced to 10 nm, and the efficiency of P3HT:PC61BM OSCs was increased to 3.2% (∼100 times higher compared to the first MAPLE OSC demonstration [ Caricato , A. P. ; Appl. Phys. Lett. 2012 , 100 , 073306 ]). This work unveils the mechanism of polymer film formation using emulsion-based RIR-MAPLE and provides insight and direction to determine the best ways to take advantage of the emulsion target approach to control film properties for different applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dye-sensitized solar cell (DSSC) is currently a promising technology that makes solar energy efficient and cost-effective to harness. In DSSC, metal free dyes, such indoline-containing D149 and D205, are proved to be potential alternatives for traditional metal organic dyes. In this work, a DFT/TDDFT characterization for D149 and D205 were carried out using different functionals, including B3LYP, MPW1K, CAM-B3LYP and PBE0. Three different conformers for D149 and four different conformers for D205 were identified and calculated in vacuum. The performance of different functionals on calculating the maximum absorbance of the dyes in vacuum and five common solvents (acetonitrile, chloroform, ethanol, methanol, and THF) were examined and compared to determine the suitable computational setting for predicting properties of these two dyes. Furthermore, deprotonated D149 and D205 in solvents were also considered, and the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated, which elucidates the substitution effect on the rhodanine ring of D149 and D205 dyes on their efficiency. Finally, D149 and D205 molecules were confirmed to be firmly anchored on ZnO surface by periodic DFT calculations. These results would shed light on the design of new highly efficiency metal-free dyes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CuSCN extremely thin absorber solar cell. Nanostructured TiO2 deposited by screen printing on an ITO substrate was used as an n-type electrode. An ∼80 nm extremely thin layer of the system In2S3-Sb2S3 deposited by successive ionic layer adsorption and a reaction (silar) method was used as an absorber. The voids were filled with p-type CuSCN and the entire assembly was completed with a gold contact. The solar cell fabricated with this heterostructure showed an energy conversion efficiency of 4.9%, which is a promising result in the development of low cost and simple fabrication of solar cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of the external quantum efficiency (EQE) of low bandgap subcells in a multijunction solar cell can be sometimes problematic. In particular, this paper describes a set of cases where the EQE of a Ge subcell in a conventional GaInP/GaInAs/Ge triple-junction solar cell cannot be fully measured. We describe the way to identify each case by tracing the I-V curve under the same light-bias conditions applied for the EQE measurement, together with the strategies that could be implemented to attain the best possible measurement of the EQE of the Ge subcell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Next to conventional solar panels that harvest direct sunlight, p-type dye-sensitized solar cells (DSSCs) have been developed, which are able to harvest diffuse sunlight. Due to unwanted charge recombination events p-type DSSCs exhibit low power conversion efficiencies (PCEs). Previous research has shown that dye-redox mediator (RM) interactions can prevent these recombination events, resulting in higher PCEs. It is unknown how the nature of dye-RM interactions affects the PCEs of pseudorotaxane-based solar cells. In this research this correlation is investigated by comparing one macrocycle, the 3-NDI, in combination with the three dyes that contains a recognition sites. 2D-DOSY-NMR experiments have been conducted to evaluate the diffusion constants (LogD) of the three couple. The research project has been stopped due to the coronavirus pandemic. The continuation of this thesis would have been to synthesize a dye on the basis of the data obtained from the diffusion tests and attempt the construction of a solar cell to then evaluate its effectiveness. During my training period I synthetized new Fe(0) cyclopentadienone compounds bearing a N-Heterocyclic Carbene ligand. The aim of the thesis was to achieve water solubility by modifications of the cyclopentadienone ligand. These new complexes have been modified using a sulfonation reaction, replacing an hydroxyl with a sulfate group, on the alkyl backbone of the cyclopentadienone ligand. All the complexes were characterized with IR, ESI-MS and NMR spectroscopy, and a new Fe(0) cyclopentadienone complex, involved as an intermediate, was obtained as a single crystal and was characterized also with X-Ray spectroscopy.