973 resultados para soil depth


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This data set contains measurements of dissolved nitrogen (total dissolved nitrogen: TDN, dissolved organic nitrogen: DON, dissolved ammonium: NH4+, and dissolved nitrate: NO3-) in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for nitrate (NO3-) and ammonium (NH4+) concentrations with a continuous flow analyzer (CFA, Skalar, Breda, The Netherlands). Nitrate was analyzed photometrically after reduction to NO2- and reaction with sulfanilamide and naphthylethylenediamine-dihydrochloride to an azo-dye. Our NO3- concentrations contained an unknown contribution of NO2- that is expected to be small. Simultaneously to the NO3- analysis, NH4+ was determined photometrically as 5-aminosalicylate after a modified Berthelot reaction. The detection limits of NO3- and NH4+ were 0.02 and 0.03 mg N L-1, respectively. Total dissolved N in soil solution was analyzed by oxidation with K2S2O8 followed by reduction to NO2- as described above for NO3-. Dissolved organic N (DON) concentrations in soil solution were calculated as the difference between TDN and the sum of mineral N (NO3- + NH4+). In 5% of the samples, TDN was equal to or smaller than mineral N. In these cases, DON was assumed to be zero.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Stratified soil sampling to a depth of 1m was repeated in April 2007 (as had been done before sowing in April 2002). Three independent samples per plot were taken of all plots in block 2 using a motor-driven soil column cylinder (Cobra, Eijkelkamp, 8.3 cm in diameter). Soil samples were dried at 40°C and segmented to a depth resolution of 5 cm giving 20 depth subsamples per core. All samples were analyzed independently. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, the samples in 2007 were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2006 to a depth of 30 cm. Three independent samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Soil samples were segmented to a depth resolution of 5 cm in the field, giving six depth subsamples per core, and made into composite samples per depth. Sampling locations were less than 30 cm apart from sampling locations in other years. Samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, the samples were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed before sowing in April 2002. Five independent samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Soil samples were dried at 40°C and then segmented to a depth resolution of 5 cm giving six depth subsamples per core. All samples were analyzed independently and averaged values per depth layer are reported. Sampling locations were less than 30 cm apart from sampling locations in other years. Subsequently, samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Rarely present visible plant remains were removed using tweezers. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La escasez del agua en las regiones áridas y semiáridas se debe a la escasez de precipitaciones y la distribución desigual en toda la temporada, lo que hace de la agricultura de secano una empresa precaria. Un enfoque para mejorar y estabilizar el agua disponible para la producción de cultivos en estas regiones es el uso de tecnologías de captación de agua de lluvia in situ y su conservación. La adopción de los sistemas de conservación de la humedad del suelo in situ, tales como la labranza de conservación, es una de las estrategias para mejorar la gestión de la agricultura en zonas áridas y semiáridas. El objetivo general de esta tesis ha sido desarrollar una metodología de aplicación de labranza de depósito e investigar los efectos a corto plazo sobre las propiedades físicas del suelo de las diferentes prácticas de cultivo que incluyen labranza de depósito: (reservoir tillage, RT), la laboreo mínimo: (minimum tillage, MT), la no laboreo: (zero tillage, ZT) y laboreo convencional: (conventional tillage, CT) Así como, la retención de agua del suelo y el control de la erosión del suelo en las zonas áridas y semiáridas. Como una primera aproximación, se ha realizado una revisión profunda del estado de la técnica, después de la cual, se encontró que la labranza de depósito es un sistema eficaz de cosecha del agua de lluvia y conservación del suelo, pero que no ha sido evaluada científicamente tanto como otros sistemas de labranza. Los trabajos experimentales cubrieron tres condiciones diferentes: experimentos en laboratorio, experimentos de campo en una región árida, y experimentos de campo en una región semiárida. Para investigar y cuantificar el almacenamiento de agua a temperatura ambiente y la forma en que podría adaptarse para mejorar la infiltración del agua de lluvia recolectada y reducir la erosión del suelo, se ha desarrollado un simulador de lluvia a escala de laboratorio. Las características de las lluvias, entre ellas la intensidad de las precipitaciones, la uniformidad espacial y tamaño de la gota de lluvia, confirmaron que las condiciones naturales de precipitación son simuladas con suficiente precisión. El simulador fue controlado automáticamente mediante una válvula de solenoide y tres boquillas de presión que se usaron para rociar agua correspondiente a diferentes intensidades de lluvia. Con el fin de evaluar el método de RT bajo diferentes pendientes de superficie, se utilizaron diferentes dispositivos de pala de suelo para sacar un volumen idéntico para hacer depresiones. Estas depresiones se compararon con una superficie de suelo control sin depresión, y los resultados mostraron que la RT fue capaz de reducir la erosión del suelo y la escorrentía superficial y aumentar significativamente la infiltración. Luego, basándonos en estos resultados, y después de identificar la forma adecuada de las depresiones, se ha diseñado una herramienta combinada (sistema integrado de labranza de depósito (RT)) compuesto por un arado de una sola línea de chisel, una sola línea de grada en diente de pico, sembradora modificada, y rodillo de púas. El equipo fue construido y se utiliza para comparación con MT y CT en un ambiente árido en Egipto. El estudio se realizó para evaluar el impacto de diferentes prácticas de labranza y sus parámetros de funcionamiento a diferentes profundidades de labranza y con distintas velocidades de avance sobre las propiedades físicas del suelo, así como, la pérdida de suelo, régimen de humedad, la eficiencia de recolección de agua, y la productividad de trigo de invierno. Los resultados indicaron que la RT aumentó drásticamente la infiltración, produciendo una tasa que era 47.51% más alta que MT y 64.56% mayor que la CT. Además, los resultados mostraron que los valores más bajos de la escorrentía y pérdidas de suelos 4.91 mm y 0.65 t ha-1, respectivamente, se registraron en la RT, mientras que los valores más altos, 11.36 mm y 1.66 t ha-1, respectivamente, se produjeron en el marco del CT. Además, otros dos experimentos de campo se llevaron a cabo en ambiente semiárido en Madrid con la cebada y el maíz como los principales cultivos. También ha sido estudiado el potencial de la tecnología inalámbrica de sensores para monitorizar el potencial de agua del suelo. Para el experimento en el que se cultivaba la cebada en secano, se realizaron dos prácticas de labranza (RT y MT). Los resultados mostraron que el potencial del agua del suelo aumentó de forma constante y fue consistentemente mayor en MT. Además, con independencia de todo el período de observación, RT redujo el potencial hídrico del suelo en un 43.6, 5.7 y 82.3% respectivamente en comparación con el MT a profundidades de suelo (10, 20 y 30 cm, respectivamente). También se observaron diferencias claras en los componentes del rendimiento de los cultivos y de rendimiento entre los dos sistemas de labranza, el rendimiento de grano (hasta 14%) y la producción de biomasa (hasta 8.8%) se incrementaron en RT. En el experimento donde se cultivó el maíz en regadío, se realizaron cuatro prácticas de labranza (RT, MT, ZT y CT). Los resultados revelaron que ZT y RT tenían el potencial de agua y temperatura del suelo más bajas. En comparación con el tratamiento con CT, ZT y RT disminuyó el potencial hídrico del suelo en un 72 y 23%, respectivamente, a la profundidad del suelo de 40 cm, y provocó la disminución de la temperatura del suelo en 1.1 y un 0.8 0C respectivamente, en la profundidad del suelo de 5 cm y, por otro lado, el ZT tenía la densidad aparente del suelo y resistencia a la penetración más altas, la cual retrasó el crecimiento del maíz y disminuyó el rendimiento de grano que fue del 15.4% menor que el tratamiento con CT. RT aumenta el rendimiento de grano de maíz cerca de 12.8% en comparación con la ZT. Por otra parte, no hubo diferencias significativas entre (RT, MT y CT) sobre el rendimiento del maíz. En resumen, según los resultados de estos experimentos, se puede decir que mediante el uso de la labranza de depósito, consistente en realizar depresiones después de la siembra, las superficies internas de estas depresiones se consolidan de tal manera que el agua se mantiene para filtrarse en el suelo y por lo tanto dan tiempo para aportar humedad a la zona de enraizamiento de las plantas durante un período prolongado de tiempo. La labranza del depósito podría ser utilizada como un método alternativo en regiones áridas y semiáridas dado que retiene la humedad in situ, a través de estructuras que reducen la escorrentía y por lo tanto puede resultar en la mejora de rendimiento de los cultivos. ABSTRACT Water shortage in arid and semi-arid regions stems from low rainfall and uneven distribution throughout the season, which makes rainfed agriculture a precarious enterprise. One approach to enhance and stabilize the water available for crop production in these regions is to use in-situ rainwater harvesting and conservation technologies. Adoption of in-situ soil moisture conservation systems, such as conservation tillage, is one of the strategies for upgrading agriculture management in arid and semi-arid environments. The general aim of this thesis is to develop a methodology to apply reservoir tillage to investigate the short-term effects of different tillage practices including reservoir tillage (RT), minimum tillage (MT), zero tillage (ZT), and conventional tillage (CT) on soil physical properties, as well as, soil water retention, and soil erosion control in arid and semi-arid areas. As a first approach, a review of the state of the art has been done. We found that reservoir tillage is an effective system of harvesting rainwater and conserving soil, but it has not been scientifically evaluated like other tillage systems. Experimental works covered three different conditions: laboratory experiments, field experiments in an arid region, and field experiments in a semi-arid region. To investigate and quantify water storage from RT and how it could be adapted to improve infiltration of harvested rainwater and reduce soil erosion, a laboratory-scale rainfall simulator was developed. Rainfall characteristics, including rainfall intensity, spatial uniformity and raindrop size, confirm that natural rainfall conditions are simulated with sufficient accuracy. The simulator was auto-controlled by a solenoid valve and three pressure nozzles were used to spray water corresponding to different rainfall intensities. In order to assess the RT method under different surface slopes, different soil scooping devices with identical volume were used to create depressions. The performance of the soil with these depressions was compared to a control soil surface (with no depression). Results show that RT was able to reduce soil erosion and surface runoff and significantly increase infiltration. Then, based on these results and after selecting the proper shape of depressions, a combination implement integrated reservoir tillage system (integrated RT) comprised of a single-row chisel plow, single-row spike tooth harrow, modified seeder, and spiked roller was developed and used to compared to MT and CT in an arid environment in Egypt. The field experiments were conducted to evaluate the impact of different tillage practices and their operating parameters at different tillage depths and different forward speeds on the soil physical properties, as well as on runoff, soil losses, moisture regime, water harvesting efficiency, and winter wheat productivity. Results indicated that the integrated RT drastically increased infiltration, producing a rate that was 47.51% higher than MT and 64.56% higher than CT. In addition, results showed that the lowest values of runoff and soil losses, 4.91 mm and 0.65 t ha-1 respectively, were recorded under the integrated RT, while the highest values, 11.36 mm and 1.66 t ha -1 respectively, occurred under the CT. In addition, two field experiments were carried out in semi-arid environment in Madrid with barley and maize as the main crops. For the rainfed barley experiment, two tillage practices (RT, and MT) were performed. Results showed that soil water potential increased quite steadily and were consistently greater in MT and, irrespective of the entire observation period, RT decreased soil water potential by 43.6, 5.7, and 82.3% compared to MT at soil depths (10, 20, and 30 cm, respectively). In addition, clear differences in crop yield and yield components were observed between the two tillage systems, grain yield (up to 14%) and biomass yield (up to 8.8%) were increased by RT. For the irrigated maize experiment, four tillage practices (RT, MT, ZT, and CT) were performed. Results showed that ZT and RT had the lowest soil water potential and soil temperature. Compared to CT treatment, ZT and RT decreased soil water potential by 72 and 23% respectively, at soil depth of 40 cm, and decreased soil temperature by 1.1 and 0.8 0C respectively, at soil depth of 5 cm. Also, ZT had the highest soil bulk density and penetration resistance, which delayed the maize growth and decreased the grain yield that was 15.4% lower than CT treatment. RT increased maize grain yield about 12.8% compared to ZT. On the other hand, no significant differences among (RT, MT, and CT) on maize yield were found. In summary, according to the results from these experiments using reservoir tillage to make depressions after seeding, these depression’s internal surfaces are consolidated in such a way that the water is held to percolate into the soil and thus allowing time to offer moisture to the plant rooting zone over an extended period of time. Reservoir tillage could be used as an alternative method in arid and semi-arid regions and it retains moisture in-situ, through structures that reduce runoff and thus can result in improved crop yields.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose The demand of rice by the increase in population in many countries has intensified the application of pesticides and the use of poor quality water to irrigate fields. The terrestrial environment is one compartment affected by these situations, where soil is working as a reservoir, retaining organic pollutants. Therefore, it is necessary to develop methods to determine insecticides in soil and monitor susceptible areas to be contaminated, applying adequate techniques to remediate them. Materials and methods This study investigates the occurrence of ten pyrethroid insecticides (PYs) and its spatio-temporal variance in soil at two different depths collected in two periods (before plow and during rice production), in a paddy field area located in the Mediterranean coast. Pyrethroids were quantified using gas chromatography?mass spectrometry (GC?MS) after ultrasound-assisted extraction with ethyl acetate. The results obtained were assessed statistically using non-parametric methods, and significant statistical differences (p < 0.05) in pyrethroids content with soil depth and proximity to wastewater treatment plants were evaluated. Moreover, a geographic information system (GIS) was used to monitor the occurrence of PYs in paddy fields and detect risk areas. Results and discussion Pyrethroids were detected at concentrations ?57.0 ng g?1 before plow and ?62.3 ng g?1 during rice production, being resmethrin and cyfluthrin the compounds found at higher concentrations in soil. Pyrethroids were detected mainly at the top soil, and a GIS program was used to depict the obtained results, showing that effluents from wastewater treatment plants (WWTPs) were the main sources of soil contamination. No toxic effects were expected to soil organisms, but it is of concern that PYs may affect aquatic organisms, which represents the worst case scenario. Conclusions A methodology to determine pyrethroids in soil was developed to monitor a paddy field area. The use of water fromWWTPs to irrigate rice fields is one of the main pollution sources of pyrethroids. It is a matter of concern that PYs may present toxic effects on aquatic organisms, as they can be desorbed from soil. Phytoremediation may play an important role in this area, reducing the possible risk associated to PYs levels in soil.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Podzols of the world are divided into intra-zonal and zonal according to then location. Zonal Podzols are typical for boreal and taiga zone associated to climate conditions. Intra-zonal podzols are not necessarily limited by climate and are typical for mineral poor substrates. The Intra-zonal Podzols of the Brazilian Amazon cover important surfaces of the upper Amazon basin. Their formation is attributed to perched groundwater associated to organic matter and metals accumulations in reducing/acidic environments. Podzols have a great capacity of storing important amounts of soil organic carbon in deep thick spodic horizons (Bh), in soil depths ranging from 1.5 to 5m. Previous research concerning the soil carbon stock in Amazon soils have not taken into account the deep carbon stock (below 1 m soil depth) of Podzols. Given this, the main goal of this research was to quantify and to map the soil organic carbon stock in the region of Rio Negro basin, considering the carbon stored in the first soil meter as well as the carbon stored in deep soil horizons up to 3m. The amount of soil organic carbon stored in soils of Rio Negro basin was evaluated in different map scales, from local surveys, to the scale of the basin. High spatial and spectral resolution remote sensing images were necessary in order to map the soil types of the studied areas and to estimate the soil carbon stock in local and regional scale. Therefore, a multi-sensor analysis was applied with the aim of generating a series of biophysical attributes that can be indirectly related to lateral variation of soil types. The soil organic carbon stock was also estimated for the area of the Brazilian portion of the Rio Negro basin, based on geostatistical analysis (multiple regression kriging), remote sensing images and legacy data. We observed that Podzols store an average carbon stock of 18 kg C m-2 on the first soil meter. Similar amount was observed in adjacent soils (mainly Ferralsols and Acrisols) with an average carbon stock of 15 kg C m-2. However if we take into account a 3 m soil depth, the amount of carbon stored in Podzols is significantly higher with values ranging from 55 kg C m-2 to 82 kg C m-2, which is higher than the one stored in adjacent soils (18 kg C m-2 to 25 kg C m-2). Given this, the amount of carbon stored in deep soil horizons of Podzols should be considered as an important carbon reservoir, face a scenario of global climate change

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This data set describes different vegetation, soil and plant functional traits (PFTs) of 15 plant species in 30 sampling plots of an agricultural landscape in the Haean-myun catchment in South Korea. We divided the data set into two main tables, the first one includes the PFTs data of the 15 studied plant species, and the second one includes the soil and vegetation characteristics of the 30 sampling plots. For a total of 150 individuals, we measures the maximum plant height (cm) and leaf size (cm**2), which means the leaf surface area for the aboveground compartment of each individual. For the belowground compartment, we measured root horizontal width, which is the maximum horizontal spread of the root, rooting length, which is the maximum rooting depth, root diameter, which is the average root diameter of a the whole root, specific root length (SRL), which is the root length divided by the root dry mass, and root/shoot ratio, which is the root dry mass divided by the shoot dry mass. At each of the 30 studied plots, we estimated three different variables describing the vegetation characteristics: vegetation cover (i.e. the percentage of ground covered by vegetation), species richness (i.e. the number of observed species) and root density (estimated using a 30 cm x 30 cm metallic frame divided into nine 10 cm x 10 cm grids placed on the soil profile), as we calculated the total number of roots that appear in each of the nine grids and then we converted it into percentage based on the root count, following. Moreover, in each plot we estimated six different soil variables: Bulk density (g/cm**3), clay % (i.e. percentage of clay), silt % (i.e. percentage of silt), soil aggregate stability, using mean weight diameter (MWD), penetration resistance (kg/cm**2), using pocket penetrometer and soil shear vane strength (kPa).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pesticides leaching through a soil profile will be exposed to changing environmental sorption and desorption conditions as different horizons with distinct physical and chemical properties are encountered. Soil cores were taken from a clay soil profile and samples taken from 0.0 to 0.3 m (surface), 1.0-1.3 m (mid) and 2.7-3.0 m (deep) and treated with the chloroacetanilide herbicide, acetochlor. Freundlich isotherms revealed that sorption and desorption behaviour varied with each depth sampled. As soil depth increased, the extent and strength of sorption decreased, indicating that the potential for leaching was increased in the subsoils compared with the surface soil. Hysteresis was evident at each of the three depths sampled, although no significant correlations between soil properties and the hysteresis coefficients were evident. Desorption studies using soil fractions with diameters of > 2000, 250-2000, 53-250, 20-53, 2-20, 0-2 and 0-1 mum separated from each of the three soil depths showed that differential desorption kinetics occurred and that the retention of acetochlor significantly correlated (R-2 = 0.998) with organic matter content. A greater understanding of the influence of soil components on the overall sorption and desorption potential of surface and subsurface soils is required to allow accurate prediction of acetochlor retention in the soil. In addition, it is likely that the proportion of each size fraction in a soil horizon would influence acetochlor bioavailability and movement to groundwater.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A semi-arid mangrove estuary system in the northeast Brazilian coast (Ceará state) was selected for this study to (i) evaluate the impact of shrimp farm nutrient-rich wastewater effluents on the soil geochemistry and organic carbon (OC) storage and (ii) estimate the total amount of OC stored in mangrove soils (0–40 cm). Wastewater-affected mangrove forests were referred to as WAM and undisturbed areas as Non-WAM. Redox conditions and OC content were statistically correlated (P < 0.05) with seasonality and type of land use (WAM vs. Non-WAM). Eh values were from anoxic to oxic conditions in the wet season (from − 5 to 68 mV in WAM and from < 40 to > 400 mV in Non-WAM soils) and significantly higher (from 66 to 411 mV) in the dry season (P < 0.01). OC contents (0–40 cm soil depth) were significantly higher (P < 0.01) in the wet season than the dry season, and higher in Non-WAM soils than in WAM soils (values of 8.1 and 6.7 kg m− 2 in the wet and dry seasons, respectively, for Non-WAM, and values of 3.8 and 2.9 kg m− 2 in the wet and dry seasons, respectively, for WAM soils; P < 0.01). Iron partitioning was significantly dependent (P < 0.05) on type of land use, with a smaller degree of pyritization and lower Fe-pyrite presence in WAM soils compared to Non-WAM soils. Basal respiration of soil sediments was significantly influenced (P < 0.01) by type of land use with highest CO2 flux rates measured in the WAM soils (mean values of 0.20 mg CO2 h− 1–g− 1 C vs. 0.04 mg CO2 h− 1–g− 1 C). The OC storage reduction in WAM soils was potentially caused (i) by an increase in microbial activity induced by loading of nutrient-rich effluents and (ii) by an increase of strong electron acceptors [e.g., NO3−] that promote a decrease in pyrite concentration and hence a reduction in soil OC burial. The current estimated OC stored in mangrove soils (0–40 cm) in the state of Ceará is approximately 1 million t.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and sedge vegetation with higher soil moisture.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antarctic glacier forefields are extreme environments and pioneer sites for ecological succession. Increasing temperatures due to global warming lead to enhanced deglaciation processes in cold-affected habitats, and new terrain is becoming exposed to soil formation and microbial colonization. However, only little is known about the impact of environmental changes on microbial communities and how they develop in connection to shifting habitat characteristics. In this study, using a combination of molecular and geochemical analysis, we determine the structure and development of bacterial communities depending on soil parameters in two different glacier forefields on Larsemann Hills, East Antarctica. Our results demonstrate that deglaciation-dependent habitat formation, resulting in a gradient in soil moisture, pH and conductivity, leads to an orderly bacterial succession for some groups, for example Cyanobacteria, Bacteroidetes and Deltaproteobacteria in a transect representing 'classical' glacier forefields. A variable bacterial distribution and different composed communities were revealed according to soil heterogeneity in a slightly 'matured' glacier forefield transect, where Gemmatimonadetes, Flavobacteria, Gamma- and Deltaproteobacteria occur depending on water availability and soil depth. Actinobacteria are dominant in both sites with dominance connected to certain trace elements in the glacier forefields.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The data files give the basic field and laboratory data on five ponds in the northeast Siberian Arctic tundra on Samoylov. The files contain water and soil temperature data of the ponds, methane fluxes, measured with closed chambers in the centres without vascular plants and the margins with vascular plants, the contribution of plant mediated fluxes on total methane fluxes, the gas concentrations (methane and dissolved inorganic carbon, oxygen) in the soil and the water column of the ponds, microbial activities (methane production, methane oxidation, aerobic and anaerobic carbon dioxide production), total carbon pools in the different horizons of the bottom soils, soil bulk density, soil substance density, and soil porosity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oil polluted and not oil polluted soils (crude oil hydrocarbons contents: 20-92500 mg/kg dry soil mass) under natural grass and forest vegetation and in a bog in the Russian tundra were compared in their principal soil ecological parameters, the oil content and the microbial indicators. CFE biomass-C, dehydrogenase and arylsulfatase activity were enhanced with the occurrence of crude oil. Using these parameters for purposes of controlling remediation and recultivation success it is not possible to distinguish bctween promotion of microbial activity by oil carbon or soil organic carbon (SOC). For this reason we think that these parameters are not appropriate to indicate a soil damage by an oil impact. In contrast the metabolie quotient (qC02), calculated as the ratio between soil basal respiration and the SIR biomass-C was adequate to indicate a high crude oil contamination in soil. Also, the ß-glucosidase activity (parameter ß-GL/SOC) was correlated negatively with oil in soil. The indication of a soil damage by using the stress parameter qCO, or the specific enzyme activities (activity/SOC) minimizes the promotion effect of the recent SOC content on microbial parameters. Both biomass methods (SIR, CFE) have technical problems in application for crude oil-contaminated and subarctic soils. CFE does not reflect the low C_mic level of the cold tundra soils. We recommend to test every method for its suitability before any data collection in series as well as application for cold soils and the application of ecophysiological ratios as R_mic/C_mic, C_mic/SOC or enzymatic activity/SOC instead of absolute data.