1000 resultados para soil aggregates


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research project HR-155 was initiated to study soil erosion problems along the secondary road system in Iowa and to find a substitute for straw for the control of soil erosion during the period of seed establishment. Accordingly, six field research sites were established to test the ability of commercial soil conditioners to control soil erosion. The six field research sites were selected on the basis of terrain and type of soil material exposed on the cut-slope areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Borrow areas are created where soil is removed to provide needed fill material for highway and other construction projects. Where these areas are located beyond the highway right-of-way, they must be restored and returned to useful purposes. In Iowa, borrow areas are often developed on agricultural lands and therefore, it is necessary to return them to agricultural uses whenever possible. This research project was established to evaluate the changes in row crop productivity where borrow is removed for highway construction. Secondly, several reclamation techniques were selected to be applied to borrow area research sites and the response of crops to each treatment will be evaluated. All borrow area research sites were selected in 1977 from Iowa Department of Transportation construction plans. The Audubon and Buchanan County sites were completed in the fall of 1977 and May 1978, respectively. Both were used for research in 1978, 1979, and 1980. The two remaining sites in Hamilton and Lee Counties were completed in the fall of 1978 and research was conducted at these sites in 1979, 1980, and 1981. In this report, the 1981 results from the Hamilton and Lee County borrow sites will be presented. Secondly, a summary of the three years of research from each borrow area will be presented along with specific and general conclusions from the research project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality granular materials suitable for building all-weather roads are not uniformly distributed throughout the state of Iowa. For this reason the Iowa Highway Research Board has sponsored a number of research programs for the purpose of developing new and effective methods for making use of whatever materials are locally available. This need is ever more pressing today due to the decreasing availability of road funds and quality materials, and the increasing costs of energy and all types of binder materials. In the 1950s, Professor L. H. Csanyi of Iowa State University had demonstrated both in the laboratory and in the field, in Iowa and in a number of foreign countries, the effectiveness of preparing low cost mixes by stabilizing ungraded local aggregates such as gravel, sand and loess with asphalt cements using the foamed asphalt process. In this process controlled foam was produced by introducing saturated steam at about 40 psi into heated asphalt cement at about 25 psi through a specially designed and properly adjusted nozzle. The reduced viscosity and the increased volume and surface energy in the foamed asphalt allowed intimate coating and mixing of cold, wet aggregates or soils. Through the use of asphalt cements in a foamed state, materials normally considered unsuitable could be used in the preparation of mixes for stabilized bases and surfaces for low traffic road construction. By attaching the desired number of foam nozzles, the foamed asphalt can be used in conjunction with any type of mixing plant, either stationary or mobile, batch or continuous, central plant or in-place soil stabilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary purposes of this investigation are: 1) To delineate flood plain deposits with different geologic and engineering properties. 2) To provide basic data necessary for any attempt at stabilizing flood plain deposits. The alluvial valley of the Missouri River adjacent to Iowa was chosen as the logical place to begin this study. The river forms the western boundary of the state for an airline distance of approximately 139 miles; and the flood plain varies from a maximum width of approximately 18 miles (Plates 2 and 3, Sheets 75 and 75L) to approximately 4 miles near Crescent, Iowa (Plate 8, Sheet 66). The area studied includes parts of Woodbury, Monona, Harrison, Pottawattamie, Mills, and Fremont counties in Iowa and parts of Dakota, Thurston, Burt, Washington, Douglas, Sarpy, Cass and Otoe counties in Nebraska. Plate l is an index map of the area under consideration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil treated with self-cementing fly ash is increasingly being used in Iowa to stabilize fine-grained pavement subgrades, but without a complete understanding of the short- and long-term behavior. To develop a broader understanding of fly ash engineering properties, mixtures of five different soil types, ranging from ML to CH, and several different fly ash sources (including hydrated and conditioned fly ashes) were evaluated. Results show that soil compaction characteristics, compressive strength, wet/dry durability, freeze/thaw durability, hydration characteristics, rate of strength gain, and plasticity characteristics are all affected by the addition of fly ash. Specifically, Iowa selfcementing fly ashes are effective at stabilizing fine-grained Iowa soils for earthwork and paving operations; fly ash increases compacted dry density and reduces the optimum moisture content; strength gain in soil-fly ash mixtures depends on cure time and temperature, compaction energy, and compaction delay; sulfur contents can form expansive minerals in soil–fly ash mixtures, which severely reduces the long-term strength and durability; fly ash increases the California bearing ratio of fine-grained soil–fly ash effectively dries wet soils and provides an initial rapid strength gain; fly ash decreases swell potential of expansive soils; soil-fly ash mixtures cured below freezing temperatures and then soaked in water are highly susceptible to slaking and strength loss; soil stabilized with fly ash exhibits increased freeze-thaw durability; soil strength can be increased with the addition of hydrated fly ash and conditioned fly ash, but at higher rates and not as effectively as self-cementing fly ash. Based on the results of this study, three proposed specifications were developed for the use of self-cementing fly ash, hydrated fly ash, and conditioned fly ash. The specifications describe laboratory evaluation, field placement, moisture conditioning, compaction, quality control testing procedures, and basis of payment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT The objective of this study was to evaluate the chemical and physical attributes of different soil cover in a Oxisol with a strong wavy relief in the Atlantic Forest Biome, in which were selected three watersheds, employed with grazing (watershed P), forest (watershed M) and coffee (watershed C). Deformed and not deformed samples were collected in three depths for physical and chemical characterization. The chemical characteristics of soil in different watershed studies presented low levels of fertility. It was observed an elevation of pH in the soil and contents of Ca2+ and Mg2+ in the watersheds P and C in relation to the watershed M. Due to deforestation and the establishment of agriculture and livestock, there was a decrease in the contents of soil organic matter in the watershed P and C, not altering the physical characteristics of the soil in the watershed P. The implementation of coffee plantation is causing a reduction in the soil quality of watershed C in comparison to the watershed P and M, therefore indicating a need to adequate soil management in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Cerrado soils under grazing, changes occur in physical attributes, such as increased density, decreasing on the size of water stable aggregates, and macroporosity reduction. Thus, the aim of this study was to study the effect of compaction on the establishment of two forages. It was adopted a completely randomized design with three replications, in 2 x 4 factorial design, and two forages (Xaraés grass and Marandu grass), and four levels of compaction (soil densities of 1.0, 1.2, 1.4, and 1.6 Mg m-3). The following variables were evaluated 48 days after sowing: tiller population, plant height, dry matter production of shoots and components, leaf and stem, as well as the root dry mass. The stem dry mass decreased with soil density in a similar manner for both forages. It was observed that the leaf dry mass and shoots dry mass of Xaraés grass remained constant in the levels of soil compaction, not adjusting to any regression model. The establishment of Xaraés grass has not been negatively affected by compaction, which may be suitable for situations where there may be layers that restrict the growth of different forages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wear resistance of rotary plows operating in a clay loam soil was studied. The degree of damage caused to the soil and the amount of mass lost by the tools were determined in order to establish correlations between the physical properties of the soil and the wear mechanisms acting on the tribosystem. Field tests were carried out in 12 plots and a randomized experimental design with 4 levels, 3 replicas per level and 2 passes per plot was applied. The levels relate to the tillage implements employed: rotary tiller, rotary power harrow, small motorized rotary tiller and control (unaltered soil). The highest mass losses were measured in rotary tiller and rotary power harrow's tools, while the small motorized rotary tiller's tools showed generally lower levels of damage. It was determined that the effective contact time between tool and soil, the rotating speed and the sudden impact forces are the most significant factors affecting the wear resistance in field operations. Thirty days after tillage operation the soil samples were taken from each plot at a mean depth of 100 mm in order to determine bulk density, gravimetric moisture content and percentage of aggregates smaller than 5 mm. No significant differences among the values of these properties were found in the experiments. The wear mechanisms acting on the tools' surface are complex and include 2-body and 3-body abrasion as well as the presence of sudden impact forces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved understanding of soil organic carbon (Corg) dynamics in interaction with the mechanisms of soil structure formation is important in terms of sustainable agriculture and reduction of environmental costs of agricultural ecosystems. However, information on physical and chemical processes influencing formation and stabilization of water stable aggregates in association with Corg sequestration is scarce. Long term soil experiments are important in evaluating open questions about management induced effects on soil Corg dynamics in interaction with soil structure formation. The objectives of the present thesis were: (i) to determine the long term impacts of different tillage treatments on the interaction between macro aggregation (>250 µm) and light fraction (LF) distribution and on C sequestration in plots differing in soil texture and climatic conditions. (ii) to determine the impact of different tillage treatments on temporal changes in the size distribution of water stable aggregates and on macro aggregate turnover. (iii) to evaluate the macro aggregate rebuilding in soils with varying initial Corg contents, organic matter (OM) amendments and clay contents in a short term incubation experiment. Soil samples were taken in 0-5 cm, 5-25 cm and 25-40 cm depth from up to four commercially used fields located in arable loess regions of eastern and southern Germany after 18-25 years of different tillage treatments with almost identical experimental setups per site. At each site, one large field with spatially homogenous soil properties was divided into three plots. One of the following three tillage treatments was carried in each plot: (i) Conventional tillage (CT) with annual mouldboard ploughing to 25-30 cm (ii) mulch tillage (MT) with a cultivator or disc harrow 10-15 cm deep, and (iii) no tillage (NT) with direct drilling. The crop rotation at each site consisted of sugar beet (Beta vulgaris L.) - winter wheat (Triticum aestivum L.) - winter wheat. Crop residues were left on the field and crop management was carried out following the regional standards of agricultural practice. To investigate the above mentioned research objectives, three experiments were conducted: Experiment (i) was performed with soils sampled from four sites in April 2010 (wheat stand). Experiment (ii) was conducted with soils sampled from three sites in April 2010, September 2011 (after harvest or sugar beet stand), November 2011 (after tillage) and April 2012 (bare soil or wheat stand). An incubation study (experiment (iii)) was performed with soil sampled from one site in April 2010. Based on the aforementioned research objectives and experiments the main findings were: (i) Consistent results were found between the four long term tillage fields, varying in texture and climatic conditions. Correlation analysis of the yields of macro aggregate against the yields of free LF ( ≤1.8 g cm-3) and occluded LF, respectively, suggested that the effective litter translocation in higher soil depths and higher litter input under CT and MT compensated in the long term the higher physical impact by tillage equipment than under NT. The Corg stocks (kg Corg m−2) in 522 kg soil, based on the equivalent soil mass approach (CT: 0–40 cm, MT: 0–38 cm, NT: 0–36 cm) increased in the order CT (5.2) = NT (5.2) < MT (5.7). Significantly (p ≤ 0.05) highest Corg stocks under MT were probably a result of high crop yields in combination with reduced physical tillage impact and effective litter incorporation, resulting in a Corg sequestration rate of 31 g C-2 m-2 yr-1. (ii) Significantly higher yields of macro aggregates (g kg-2 soil) under NT (732-777) and MT (680-726) than under CT (542-631) were generally restricted to the 0-5 cm sampling depth for all sampling dates. Temporal changes on aggregate size distribution were only small and no tillage induced net effect was detectable. Thus, we assume that the physical impact by tillage equipment was only small or the impact was compensated by a higher soil mixing and effective litter translocation into higher soil depths under CT, which probably resulted in a high re aggregation. (iii) The short term incubation study showed that macro aggregate yields (g kg-2 soil) were higher after 28 days in soils receiving OM (121.4-363.0) than in the control soils (22.0-52.0), accompanied by higher contents of microbial biomass carbon and ergosterol. Highest soil respiration rates after OM amendments within the first three days of incubation indicated that macro aggregate formation is a fast process. Most of the rebuilt macro aggregates were formed within the first seven days of incubation (42-75%). Nevertheless, it was ongoing throughout the entire 28 days of incubation, which was indicated by higher soil respiration rates at the end of the incubation period in OM amended soils than in the control soils. At the same time, decreasing carbon contents within macro aggregates over time indicated that newly occluded OM within the rebuilt macro aggregates served as Corg source for microbial biomass. The different clay contents played only minor role in macro aggregate formation under the particular conditions of the incubation study. Overall, no net changes on macro aggregation were identified in the short term. Furthermore, no indications for an effective Corg sequestration on the long term under NT in comparison to CT were found. The interaction of soil disturbance, litter distribution and the fast re aggregation suggested that a distinct steady state per tillage treatment in terms of soil aggregation was established. However, continuous application of MT with a combination of reduced physical tillage impact and effective litter incorporation may offer some potential in improving the soil structure and may therefore prevent incorporated LF from rapid decomposition and result in a higher C sequestration on the long term.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brazil has the largest cattle herd in the world with approximately 200 million head. An important feature of the Brazilian cattle industry is that most of its herd is raised on pasture, which constitutes one of the most economical and practical ways to produce and provide food for cattle. However, this production model is mishandled and can lead to soil degradation. Maintaining soil quality is essential for the conservation of natural ecosystems and the areas of production, thus soil quality improves the conditions for biogeochemical cycles. In this context, the objective of this study was to develop a device for testing the Inderbitzen way of assessing soil erodibility in two situations of usage and occupation. Therefore, one area was used as a sample collection occupied by grazing and the other as a forest fragment; both located in the city of Sorocaba in Sao Paulo State, Brazil. Thus, we concluded that the proposed device - the Inderbitzen - proved capable of assessing soil erodibility of the pasture and remnant forest. Accordingly, there was a tendency for a smaller loss of forest soils in the remnant when compared to the degraded pasture. The greatest resistance of the soil erosion in the forest remnant may be associated with the amount of organic matter released by the forest litter in all its diversity, influencing the quality of the structure of aggregates. © 2013 WIT Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical fractions (free light fraction, intra-aggregate light fraction and heavy fraction) of soil organic matter (SOM) are good indicators of soil quality for sustainable land use. The objective of this study was to evaluate the effect of cover crops on total organic carbon (TOC) and physical fractions of soil organic matter in soil under a no-tillage system (NTS) and a conventional tillage system (CTS, one plowing and two disking). A three-year field experiment was carried out as a cover crop-rice (Oryza sativa)-cover crop-rice rotation. Treatments included cover crops (Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and pearl millet (Pennisetum glaucum), fallow, till or no till. The SOM was physically fractionated in free light fraction (FLF), intra-aggregates light fraction (IALF) and heavy fraction (HF). The levels of C in whole soil were also evaluated, as well as C in the light fractions (FLF+IALF) and in the HF. Results indicated that concentrations of C in the FLF and IALF in surface soils (0-0.05m) were much higher (10.8 and 1.95gkg-1, respectively) than that in the 0.05-0.1m soil depth (7.68 and 1.54gkg-1, respectively) and in the 0.1-0.2m soil depth (4.98 and 1.24gkg-1, respectively). The NTS resulted in higher levels of FLF (12.2gkg-1) and IALF (2.19gkg-1) than with CTS (1.37-7.30gkg-1). Millet had the highest C (19.5gkg-1) and N (1.1gkg-1) concentrations in soil. There was an accumulation of TOC and total N in the surface soil with cover crops, and concentrations of TOC were higher in the HF (79.0%) than in the light fractions (21.0%). Although SOM changed little during the two years of this experiment, the various C fractions were significantly affected by the tillage treatments. We conclude that SOM physical fractionation allowed seeing significant differences caused by the soil management in the organic matter dynamics in a short period of time. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growing cover crops in systems under no tillage affects different pools of soil organic matter, and eventually soil physical attributes are modified. The objective of this study was to evaluate changes in soil organic matter and their relationship with soil physical attributes as affected by plant species grown in rotation with soybean [Glycine max (L.) Merr.] under no-till for 3 yr. Crop rotations included grain sorghum [Sorghum bicolor (L.) Moench], ruzigrass [Urochloa ruziziensis (R. Germ, and CM. Evard) Crins] and sorghum mixed with ruzigrass, all grown in fall/winter, followed by pearl millet [Pennisetum americanum (L.) Leeke], sunn hemp (Crotalaria juncea L.) and sorghum-sudangrass [S. bicolor × S. sudanense (Piper) Stapf] grown during the spring, plus a fallow check plot. Soybean was grown as the summer crop. Millet and sorghum-sudangrass cropped in spring showed higher root and shoot production as spring cropping. In fall/winter, sorghum mixed with ruzigrass yielded higher phytomass compared with sole cropping. Soil physical attributes and organic matter fractioning were positively affected by cropping millet and sorghum-sudangrass whereas intermediate effects were observed after sunn hemp. Maintaining fallow in spring had negative effects on soil organic matter and physical properties. Ruzigrass and sorghum mixed with ruzigrass cropped in fall/winter resulted in better soil quality. Spring cover crops were more efficient in changing soil bulk density, porosity, and aggregates down to 0 to 10 cm; on the other hand, fall/winter cropping showed significant effects on bulk density in the uppermost soil layer. Total C levels in soil were increased after a 3-yr rotation period due to poor initial physical conditions. Fractions of particulate organic C, microbial C, and C in macroaggregates were the most affected by crop rotations, and showed high relation with improved soil physical attributes (porosity, density, and aggregates larger than 2 mm). © Soil Science Society of America, All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red mud (RM) is a mineral waste, residue of the Bayer process used to obtain alumina from bauxite. While the exploration of rolled pebble damages the environment and is much more controlled by the government, the huge RM disposal areas do not stop increasing and polluting soil, rivers and groundwater sources in Amazon. In this work, the material mixtures used to produce coarse aggregates presented up to 80% of RM, 30% of metakaolin and 30% of active silica as recycled waste. Several tests were carried out to determine the aggregates physical properties and to evaluate the mechanical performance of the concretes with the new aggregates, including hydraulic abrasion strength, and the results were compared to the reference ones, i.e. rolled pebble concretes. Additionally, the sintering process neutralizes any toxic substance as occur in some RM products like tiles and bricks, and these results have encouraged an industrial or semi-industrial production of RM aggregates for concretes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brazil has the largest cattle herd in the world with approximately 200 million head. An important feature of the Brazilian cattle industry is that most of its herd is raised on pasture, which constitutes one of the most economical and practical ways to produce and provide food for cattle. However, this production model is mishandled and can lead to soil degradation. Maintaining soil quality is essential for the conservation of natural ecosystems and the areas of production, thus soil quality improves the conditions for biogeochemical cycles. In this context, the objective of this study was to develop a device for testing the Inderbitzen way of assessing soil erodibility in two situations of usage and occupation. Therefore, one area was used as a sample collection occupied by grazing and the other as a forest fragment; both located in the city of Sorocaba in Sao Paulo State, Brazil. Thus, we concluded that the proposed device – the Inderbitzen – proved capable of assessing soil erodibility of the pasture and remnant forest. Accordingly, there was a tendency for a smaller loss of forest soils in the remnant when compared to the degraded pasture. The greatest resistance of the soil erosion in the forest remnant may be associated with the amount of organic matter released by the forest litter in all its diversity, influencing the quality of the structure of aggregates. Keywords: erosion, forest remnant, degraded pasture, Inderbitzen test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims at identifying the influence of soil surface roughness from small to large aggregates (random roughness) on runoff and soil loss and to investigate the interaction with soil surface seal formation. Bulk samples of a silty clay loam soil were sieved to four aggregate-size classes of 3 to 12, 12 to 20, 20 to 45, 45 to 100 mm, and packed in soil trays set at a 5% slope. Rainfall simulations using an oscillating nozzle simulator were conducted for 90 min at an average rainfall intensity of 50.2 mm h(-1). Soil surface roughness was measured using an instantaneous profile laser scanner and surface sealing was studied by macroscopic analysis of epoxy impregnated soil samples. The rainfall simulations revealed longer times to initiate runoff with increasing soil surface roughness. For random roughness levels up to 6 mm, a decrease in final runoff rate with increasing roughness was observed. This can be attributed to a decreased breakdown of the larger roughness elements on rougher surfaces, thus keeping infiltration rate high. For a random roughness larger than 6 mm, a greater final runoff rate was observed. This was caused by the creation of a thick depositional seal in the concentrated flow areas, thus lowering the infiltration rates. Analysis of impregnated soil sample blocks confirmed the formation of a structural surface seal on smooth surfaces, whereas thick depositional seals were visible in the depressional areas of rougher surfaces. Therefore, from our observations it can be learned that soil surface roughness as formed by the presence of different aggregate sizes reduces runoff but that its effect diminishes due to aggregate breakdown and the formation of thick depositional seals in the case of rough soil surfaces. Sediment concentration increased with increasing soil surface roughness, due to runoff concentration in flow paths. Nevertheless, final soil loss rates were comparable for all soil roughness categories, indicating that random roughness is only important in influencing runoff rates and the time to initiate runoff, but not in influencing sediment export through soil loss rates.