998 resultados para software visualization
Resumo:
Venous air embolism (VAE) is an often occurring forensic finding in cases of injury to the head and neck. Whenever found, it has to be appraised in its relation to the cause of death. While visualization and quantification is difficult at traditional autopsy, Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) offer a new potential in the diagnosis of VAE. This paper reports the findings of VAE in four cases of massive head injury examined postmortem by Multislice Computed Tomography (MSCT) prior to autopsy. MSCT data of the thorax were processed using 3D air structure reconstruction software to visualize air embolism within the vascular system. Quantification of VAE was done by multiplying air containing areas on axial 2D images by their reconstruction intervals and then by summarizing the air volumes. Excellent 3D visualization of the air within the vascular system was obtained in all cases, and the intravascular gas volume was quantified.
Resumo:
The program PanPlot was developed as a visualization tool for the information system PANGAEA. It can be used as a stand-alone application to plot data versus depth or time or in a ternary view. Data input format is tab-delimited ASCII (e.g. by export from MS-Excel or from PANGAEA). The default scales and graphic features can individualy be modified. PanPlot graphs can be exported in platform-specific interchange formats (EMF, PICT) which can be imported by graphic software for further processing.
Resumo:
The program PanPlot 2 was developed as a visualization tool for the information system PANGAEA. It can be used as a stand-alone application to plot data versus depth or time. Data input format is tab-delimited ASCII (e.g. by export from MS-Excel or from PANGAEA). The default scales and graphic features can individualy be modified. PanPlot 2 graphs can be exported in several image formats (BMP, PNG, PDF, and SVG) which can be imported by graphic software for further processing.
Resumo:
In the last decades accumulated clinical evidence has proven that intra-operative radiation therapy (IORT) is a very valuable technique. In spite of that, planning technology has not evolved since its conception, being outdated in comparison to current state of the art in other radiotherapy techniques and therefore slowing down the adoption of IORT. RADIANCE is an IORT planning system, CE and FDA certified, developed by a consortium of companies, hospitals and universities to overcome such technological backwardness. RADIANCE provides all basic radiotherapy planning tools which are specifically adapted to IORT. These include, but are not limited to image visualization, contouring, dose calculation algorithms-Pencil Beam (PB) and Monte Carlo (MC), DVH calculation and reporting. Other new tools, such as surgical simulation tools have been developed to deal with specific conditions of the technique. Planning with preoperative images (preplanning) has been evaluated and the validity of the system being proven in terms of documentation, treatment preparation, learning as well as improvement of surgeons/radiation oncologists (ROs) communication process. Preliminary studies on Navigation systems envisage benefits on how the specialist to accurately/safely apply the pre-plan into the treatment, updating the plan as needed. Improvements on the usability of this kind of systems and workflow are needed to make them more practical. Preliminary studies on Intraoperative imaging could provide an improved anatomy for the dose computation, comparing it with the previous pre-plan, although not all devices in the market provide good characteristics to do so. DICOM.RT standard, for radiotherapy information exchange, has been updated to cover IORT particularities and enabling the possibility of dose summation with external radiotherapy. The effect of this planning technology on the global risk of the IORT technique has been assessed and documented as part of a failure mode and effect analysis (FMEA). Having these technological innovations and their clinical evaluation (including risk analysis) we consider that RADIANCE is a very valuable tool to the specialist covering the demands from professional societies (AAPM, ICRU, EURATOM) for current radiotherapy procedures.
Resumo:
Multidimensional compound optimization is a new paradigm in the drug discovery process, yielding efficiencies during early stages and reducing attrition in the later stages of drug development. The success of this strategy relies heavily on understanding this multidimensional data and extracting useful information from it. This paper demonstrates how principled visualization algorithms can be used to understand and explore a large data set created in the early stages of drug discovery. The experiments presented are performed on a real-world data set comprising biological activity data and some whole-molecular physicochemical properties. Data visualization is a popular way of presenting complex data in a simpler form. We have applied powerful principled visualization methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), to help the domain experts (screening scientists, chemists, biologists, etc.) understand and draw meaningful decisions. We also benchmark these principled methods against relatively better known visualization approaches, principal component analysis (PCA), Sammon's mapping, and self-organizing maps (SOMs), to demonstrate their enhanced power to help the user visualize the large multidimensional data sets one has to deal with during the early stages of the drug discovery process. The results reported clearly show that the GTM and HGTM algorithms allow the user to cluster active compounds for different targets and understand them better than the benchmarks. An interactive software tool supporting these visualization algorithms was provided to the domain experts. The tool facilitates the domain experts by exploration of the projection obtained from the visualization algorithms providing facilities such as parallel coordinate plots, magnification factors, directional curvatures, and integration with industry standard software. © 2006 American Chemical Society.
Resumo:
The data available during the drug discovery process is vast in amount and diverse in nature. To gain useful information from such data, an effective visualisation tool is required. To provide better visualisation facilities to the domain experts (screening scientist, biologist, chemist, etc.),we developed a software which is based on recently developed principled visualisation algorithms such as Generative Topographic Mapping (GTM) and Hierarchical Generative Topographic Mapping (HGTM). The software also supports conventional visualisation techniques such as Principal Component Analysis, NeuroScale, PhiVis, and Locally Linear Embedding (LLE). The software also provides global and local regression facilities . It supports regression algorithms such as Multilayer Perceptron (MLP), Radial Basis Functions network (RBF), Generalised Linear Models (GLM), Mixture of Experts (MoE), and newly developed Guided Mixture of Experts (GME). This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install & use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
In this paper we describe a novel, extensible visualization system currently under development at Aston University. We introduce modern programming methods, such as the use of data driven programming, design patterns, and the careful definition of interfaces to allow easy extension using plug-ins, to 3D landscape visualization software. We combine this with modern developments in computer graphics, such as vertex and fragment shaders, to create an extremely flexible, extensible real-time near photorealistic visualization system. In this paper we show the design of the system and the main sub-components. We stress the role of modern programming practices and illustrate the benefits these bring to 3D visualization. © 2006 Springer-Verlag Berlin Heidelberg.
Resumo:
Джурджица Такачи - В доклада се разглеждат дидактически подходи за решаване на задачи, упражнения и доказване на теореми с използване на динамичен софтуер, по-специално – с вече широко разпространената система GeoGebra. Въз основа на концепция-та на Пойа се анализира използването на GeoGebra като когнитивно средство за решаване на задачи и за обсъждане на техни възможни обобщения.
Resumo:
Variability management is one of the major challenges in software product line adoption, since it needs to be efficiently managed at various levels of the software product line development process (e.g., requirement analysis, design, implementation, etc.). One of the main challenges within variability management is the handling and effective visualization of large-scale (industry-size) models, which in many projects, can reach the order of thousands, along with the dependency relationships that exist among them. These have raised many concerns regarding the scalability of current variability management tools and techniques and their lack of industrial adoption. To address the scalability issues, this work employed a combination of quantitative and qualitative research methods to identify the reasons behind the limited scalability of existing variability management tools and techniques. In addition to producing a comprehensive catalogue of existing tools, the outcome form this stage helped understand the major limitations of existing tools. Based on the findings, a novel approach was created for managing variability that employed two main principles for supporting scalability. First, the separation-of-concerns principle was employed by creating multiple views of variability models to alleviate information overload. Second, hyperbolic trees were used to visualise models (compared to Euclidian space trees traditionally used). The result was an approach that can represent models encompassing hundreds of variability points and complex relationships. These concepts were demonstrated by implementing them in an existing variability management tool and using it to model a real-life product line with over a thousand variability points. Finally, in order to assess the work, an evaluation framework was designed based on various established usability assessment best practices and standards. The framework was then used with several case studies to benchmark the performance of this work against other existing tools.
Resumo:
Developing a theoretical framework for pervasive information environments is an enormous goal. This paper aims to provide a small step towards such a goal. The following pages report on our initial investigations to devise a framework that will continue to support locative, experiential and evaluative data from ‘user feedback’ in an increasingly pervasive information environment. We loosely attempt to outline this framework by developing a methodology capable of moving from rapid-deployment of software and hardware technologies, towards a goal of realistic immersive experience of pervasive information. We propose various technical solutions and address a range of problems such as; information capture through a novel model of sensing, processing, visualization and cognition.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2015.
Resumo:
Purpose: Custom cranio-orbital implants have been shown to achieve better performance than their hand-shaped counterparts by restoring skull anatomy more accurately and by reducing surgery time. Designing a custom implant involves reconstructing a model of the patient's skull using their computed tomography (CT) scan. The healthy side of the skull model, contralateral to the damaged region, can then be used to design an implant plan. Designing implants for areas of thin bone, such as the orbits, is challenging due to poor CT resolution of bone structures. This makes preoperative design time-intensive since thin bone structures in CT data must be manually segmented. The objective of this thesis was to research methods to accurately and efficiently design cranio-orbital implant plans, with a focus on the orbits, and to develop software that integrates these methods. Methods: The software consists of modules that use image and surface restoration approaches to enhance both the quality of CT data and the reconstructed model. It enables users to input CT data, and use tools to output a skull model with restored anatomy. The skull model can then be used to design the implant plan. The software was designed using 3D Slicer, an open-source medical visualization platform. It was tested on CT data from thirteen patients. Results: The average time it took to create a skull model with restored anatomy using our software was 0.33 hours ± 0.04 STD. In comparison, the design time of the manual segmentation method took between 3 and 6 hours. To assess the structural accuracy of the reconstructed models, CT data from the thirteen patients was used to compare the models created using our software with those using the manual method. When registering the skull models together, the difference between each set of skulls was found to be 0.4 mm ± 0.16 STD. Conclusions: We have developed a software to design custom cranio-orbital implant plans, with a focus on thin bone structures. The method described decreases design time, and is of similar accuracy to the manual method.