939 resultados para smooth endoplasmic reticulum
Resumo:
Oligomeric assembly of neurotransmitter transporters is a prerequisite for their export from the endoplasmic reticulum (ER) and their subsequent delivery to the neuronal synapse. We previously identified mutations, e.g., in the gamma-aminobutyric acid (GABA) transporter-1 (GAT1), which disrupted assembly and caused retention of the transporter in the ER. Using one representative mutant, GAT1-E101D, we showed here that ER retention was due to association of the transporter with the ER chaperone calnexin: interaction with calnexin led to accumulation of GAT1 in concentric bodies corresponding to previously described multilamellar ER-derived structures. The transmembrane domain of calnexin was necessary and sufficient to direct the protein into these concentric bodies. Both yellow fluorescent protein-tagged versions of wild-type GAT1 and of the GAT1-E101D mutant remained in disperse (i.e., non-aggregated) form in these concentric bodies, because fluorescence recovered rapidly (t(1/2) approximately 500 ms) upon photobleaching. Fluorescence energy resonance transfer microscopy was employed to visualize a tight interaction of GAT1-E101D with calnexin. Recognition by calnexin occurred largely in a glycan-independent manner and, at least in part, at the level of the transmembrane domain. Our findings are consistent with a model in which the transmembrane segment of calnexin participates in chaperoning the inter- and intramolecular arrangement of hydrophobic segment in oligomeric proteins.
Resumo:
Previous studies have implicated Ca2+ fluxes in the control of apoptosis but their exact roles in regulating the process remain obscure. Because Ca2+ can serve as a signal for cytochrome c release from isolated mitochondria, we hypothesized that alterations in intracellular Ca2+ compartmentalization might serve as a release signal in whole cells undergoing apoptosis. Exposure of human PC-3 prostate adenocarcinoma cells to staurosporine or DNA damaging agent (doxorubicin) but not to anti-Fas antibody led to early release of Ca2+ from the endoplasmic reticulum and subsequent accumulation of Ca2+ within mitochondria. Both events were blocked in cells stably transfected with Bcl-2 but were not affected by treatment with the pancaspase inhibitor, zVADfmk. The effects of staurosporine were associated with re-localization of Bax from the cytosol to both endoplasmic reticular and mitochondrial membranes. Neither ER Ca 2+ pool depletion nor mitochondrial Ca2+ uptake were observed in DU-145 cells that possess a frameshift mutation in the Bax gene unless wild-type Bax was restored via adenoviral gene transfer. Cytochrome c release and downstream features of apoptosis were attenuated by treatment with an inhibitor of mitochondria) Ca2+ uptake (RU-360). Although, direct pharmacological ER Ca2+ pool emptying in cells treated with thapsigargin did not lead to early cytochrome c release, pretreatment of cells with staurosporine dramatically sensitized mitochondria to thapsigargin-induced cytochrome c release. Together, our data demonstrate that ER-to-mitochondrial Ca2+ fluxes promote cytochrome c release and apoptosis in cells exposed to some (but not all) pro-apoptosic stimuli. ^
Resumo:
When subjected to increased workload, the heart responds metabolically by increasing its reliance on glucose and structurally by increasing the size of myocytes. Whether changes in metabolism regulate the structural remodeling process is unknown. A likely candidate for a link between metabolism and growth in the heart is the mammalian target of rapamycin (mTOR), which couples energy and nutrient metabolism to cell growth. Recently, sustained mTOR activation has also been implicated in the development of endoplasmic reticulum (ER) stress. We explored possible mechanisms by which acute metabolic changes in the hemodynamically stressed heart regulate mTOR activation, ER stress and cardiac function in the ex vivo isolated working rat heart. Doubling the heart’s workload acutely increased rates of glucose uptake beyond rates of glucose oxidation. The concomitant increase in glucose 6-phosphate (G6P) was associated with mTOR activation, endoplasmic reticulum (ER) stress and impaired contractile function. Both rapamycin and metformin restored glycolytic homeostasis, relieved ER stress and rescued contractile function. G6P and ER stress were also downregulated with mechanical unloading of failing human hearts. Taken together, the data support the hypothesis that metabolic remodeling precedes, triggers, and sustains structural remodeling of the heart and implicate a critical role for G6P in load-induced contractile dysfunction, mTOR activation and ER stress. In general terms, the intermediary metabolism of energy providing substrates provides signals for the onset and progression of hypertrophy and heart failure.
Resumo:
Endoplasmic reticulum (ER) stress-induced inflammation plays an important role in the progression of many diseases, such as type II diabetes, insulin resistance, cancers, and so on. NF-κB is believed to be a central regulator of ER stress-induced inflammation. However, studies on how ER stress induces NF-κB activation are limited and, in some cases, controversial. In the present study, we utilized two commonly used ER stress inducers, thapsigargin and tunicamycin, to study the mechanism. We found that two caspase-recruitment domain (CARD)-containing proteins, CARMA3 and BCL10, play a crucial roles on ER stress-induced NF-κB activation by regulating IκBα kinase activity. Consistently, we observed that a physiological ER stress inducer, hypoxia, could activate NF-κB in a CARMA3-dependent manner. Additionally, we showed that the activation of the UPR signaling pathways were intact in both CARMA3- and BCL10-deficient cells under ER stress. Together, this study provides insight into the mechanism of how ER stress induces NF-κB activation. It allows us to better understand ER stress-induced inflammation and develop the corresponding therapeutic interference to treat diseases
Resumo:
The generation of transport vesicles at the endoplasmic reticulum (ER) depends on cytosolic proteins, which, in the form of subcomplexes (Sec23p/Sec24p; Sec13p/Sec31p) are recruited to the ER membrane by GTP-bound Sar1p and form the coat protein complex II (COPII). Using affinity chromatography and two-hybrid analyses, we found that the essential COPII component Sec24p, but not Sec23p, binds to the cis-Golgi syntaxin Sed5p. Sec24p/Sed5p interaction in vitro was not dependent on the presence of [Sar1p⋅GTP]. The binding of Sec24p to Sed5p is specific; none of the other seven yeast syntaxins bound to this COPII component. Whereas the interaction site of Sec23p is within the N-terminal half of the 926-aa-long Sec24p (amino acid residues 56–549), Sed5p binds to the N- and C-terminal halves of the protein. Destruction by mutagenesis of a potential zinc finger within the N-terminal half of Sec24p led to a nonfunctional protein that was still able to bind Sec23p and Sed5p. Sec24p/Sed5p binding might be relevant for cargo selection during transport-vesicle formation and/or for vesicle targeting to the cis-Golgi.
Resumo:
To understand the structure, role, and regulation of individual Ca2+ pumps in plants, we have used yeast as a heterologous expression system to test the function of a gene from Arabidopsis thaliana (ECA1). ECA1 encoded a 116-kDa polypeptide that has all the conserved domains common to P-type Ca2+ pumps (EC 3.6.1.38). The amino acid sequence shared more identity with sarcoplasmic/endoplasmic reticulum (53%) than with plasma membrane (32%) Ca2+ pumps. Yeast mutants defective in a Golgi Ca2+ pump (pmr1) or both Golgi and vacuolar Ca2+ pumps (pmr1 pmc1 cnb1) were sensitive to growth on medium containing 10 mM EGTA or 3 mM Mn2+. Expression of ECA1 restored growth of either mutant on EGTA. Membranes were isolated from the pmr1 pmc1 cnb1 mutant transformed with ECA1 to determine if the ECA1 polypeptide (ECA1p) could be phosphorylated as intermediates of the reaction cycle of Ca2+-pumping ATPases. In the presence of [γ-32P]ATP, ECA1p formed a Ca2+-dependent [32P]phosphoprotein of 106 kDa that was sensitive to hydroxylamine. Cyclopiazonic acid, a blocker of animal sarcoplasmic/endoplasmic reticulum Ca2+ pumps, inhibited the formation of the phosphoprotein, whereas thapsigargin did not. Immunoblotting with an antibody against the carboxyl tail showed that ECA1p was associated mainly with the endoplasmic reticulum membranes isolated from Arabidopsis plants. The results support the model that ECA1 encodes an endoplasmic reticulum-type Ca2+ pump in Arabidopsis. The ability of ECA1p to restore growth of mutant pmr1 on medium containing Mn2+, and the formation of a Mn2+-dependent phosphoprotein suggested that ECA1p may also regulate Mn2+ homeostasis by pumping Mn2+ into endomembrane compartments of plants.
Resumo:
Rer1p, a Golgi membrane protein, is required for the correct localization of an endoplasmic reticulum (ER) membrane protein, Sec12p, by a retrieval mechanism from the cis-Golgi to the ER. To test whether or not the role of Rer1p is common to multiple ER membrane proteins, we examined the localization of two other ER membrane proteins, Sec71p and Sec63p, in the wild-type and rer1 mutant yeast cells, using their fusions with an α-mating factor precursor (Mfα1p). Although Sec71p and Sec63p have completely different topology from Sec12p, their Mfα1p fusion proteins were also mislocalized to the trans-Golgi in the rer1 mutant. Overexpression of these fusions caused their mislocalization to the trans-Golgi even in the wild-type cells, and this mislocalization was partially suppressed by the co-overexpression of Rer1p. Either Sec71p or an artificial chimeric protein whose ER localization depends on Rer1p gave a competitive effect on the localization of the Mfα1-Sec71p fusion, which was abolished in rer1. Thus, Rer1p appears to be one of the common limiting components in the retrieval machinery for ER membrane proteins. The results also suggest that Sec71p and Sec63p depend on ER-Golgi recycling, at least partly, for ER localization. We also examined the effect of a mutation in α-COP, a subunit of yeast coatomer, on the localization of these ER membrane proteins. The Mfα1p fusions of Sec12p, Sec71p, and Sec63p were all more or less mislocalized in ret1–1. These observations imply that the roles of Rer1p and coatomer are much more general than thought before.
Resumo:
Spectrin (βIΣ∗) and ankyrin (AnkG119) associate with Golgi membranes and the dynactin complex, but their role in vesicle trafficking remains uncertain. We find that the actin-binding domain and membrane-association domain 1 (MAD1) of βI spectrin together form a constitutive Golgi targeting signal in transfected MDCK cells. Expression of this signal in transfected cells disrupts the endogenous Golgi spectrin skeleton and blocks transport of α- and β-Na,K-ATPase and vesicular stomatitis virus-G protein from the endoplasmic reticulum (ER) but does not disrupt the formation of Golgi stacks, the distribution of β-COP, or the transport and surface display of E-cadherin. The Golgi spectrin skeleton is thus required for the transport of a subset of membrane proteins from the ER to the Golgi. We postulate that together with polyfunctional adapter proteins such as AnkG119, Golgi spectrin forms a docking complex that acts prior to the cis-Golgi, presumably with vesicular–tubular clusters (VTCs or ERGIC), to sequester specific membrane proteins into vesicles transiting between the ER and Golgi, and subsequently (probably involving other isoforms of spectrin and ankyrin) to mediate cargo transport within the Golgi and to other membrane compartments. We hypothesize that this vesicular spectrin–ankyrin adapter-protein trafficking (or tethering) system (SAATS) mediates the capture and transport of many membrane proteins and acts in conjunction with vesicle-targeting molecules to effect the efficient transport of cargo proteins.
Resumo:
The human asialoglycoprotein receptor H2a subunit contains a charged pentapeptide, EGHRG, in its ectodomain that is the only sequence absent from the H2b alternatively spliced variant. H2b exits the endoplasmic reticulum (ER) even when singly expressed, whereas H2a gives rise to a cleaved soluble secreted ectodomain fragment; uncleaved membrane-bound H2a molecules are completely retained and degraded in the ER. We have inserted the H2a pentapeptide into the sequence of the H1 subunit (H1i5), which caused complete ER retention but, unexpectedly, no degradation. This suggests that the pentapeptide is a determinant for ER retention not colocalizing in H2a with the determinant for degradation. The state of sugar chain processing and the ER localization of H1i5, which was unchanged at 15°C or after treatment with nocodazole, indicate ER retention and not retrieval from the cis-Golgi or the intermediate compartment. H1i5 folded similarly to H1, and both associated to calnexin. However, whereas H1 dissociated with a half time of 45 min, H1i5 remained bound to the chaperone for prolonged periods. The correct global folding of H2a and H1i5 and of other normal precursors and unassembled proteins and the true ER retention, and not exit and retrieval, suggest a difference in their quality control mechanism compared with that of misfolded proteins, which does involve retrieval. However, both pathways may involve calnexin.