842 resultados para simulazione cluster datacenter google omnet
Resumo:
Este artigo tem por principal objetivo analisar a problemática da inovação no âmbito do cluster de uma região vitivinícola europeia tradicional (Região Demarcada do Douro - Portugal), caracterizada pelo chamado modelo vitivinícola do terroir, uma estrutura econômica suportada por um elevado número de viticultores, pequenas e médias empresas vinícolas e elevada regulação ao longo de toda a cadeia produtiva, em que, claramente, emerge a questão da tradição versus inovação. A pesquisa utilizou o método Grounded Theory, e os resultados evidenciam uma concordância de as empresas permanecerem numa região tradicional, cuja legislação dificulta as inovações radicais, mas que, concomitantemente, assegura os valores da qualidade. Verifica-se uma transferência de valores tradicionais de um produto específico, o vinho do Porto, para os novos produtos lançados recentemente no mercado; e, simultaneamente, uma transferência do valor agregado do vinho do Porto para o valor do vínculo da família com o processo produtivo e com as terras da Região Demarcada do Douro.
Resumo:
In this paper a realistic directional channel model that is an extension of the COST 273 channel model is presented. The model uses a cluster of scatterers and visibility region generation based strategy with increased realism, due to the introduction of terrain and clutter information. New approaches for path-loss prediction and line of sight modeling are considered, affecting the cluster path gain model implementation. The new model was implemented using terrain, clutter, street and user mobility information for the city of Lisbon, Portugal. Some of the model's outputs are presented, mainly path loss and small/large-scale fading statistics.
Resumo:
We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).
Resumo:
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Resumo:
International Scientific Forum, ISF 2013, ISF 2013, 12-14 December 2013, Tirana.
Resumo:
3rd SMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal.
Resumo:
3rd SMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Firms located within a cluster have access to tacit, complex and specific local knowledge which allow them to develop competitive advantage. However, firms have no equal ability to access and to apply that knowledge, meaning that not all have a similar knowledge absorptive capacity. Using a sample of the largest Portuguese firms within a footwear cluster, this paper examine whether there are significant differences in firm’s absorptive capacity and whether such differences within a cluster are related to firms’ specific characteristics. The results suggest that absorptive capacity is significantly associated with the firms’ characteristics, namely size, export intensity and position within the cluster.
Resumo:
Mestrado em Controlo de Gestão e dos Negócios
Resumo:
Scheduling of constrained deadline sporadic task systems on multiprocessor platforms is an area which has received much attention in the recent past. It is widely believed that finding an optimal scheduler is hard, and therefore most studies have focused on developing algorithms with good processor utilization bounds. These algorithms can be broadly classified into two categories: partitioned scheduling in which tasks are statically assigned to individual processors, and global scheduling in which each task is allowed to execute on any processor in the platform. In this paper we consider a third, more general, approach called cluster-based scheduling. In this approach each task is statically assigned to a processor cluster, tasks in each cluster are globally scheduled among themselves, and clusters in turn are scheduled on the multiprocessor platform. We develop techniques to support such cluster-based scheduling algorithms, and also consider properties that minimize total processor utilization of individual clusters. In the last part of this paper, we develop new virtual cluster-based scheduling algorithms. For implicit deadline sporadic task systems, we develop an optimal scheduling algorithm that is neither Pfair nor ERfair. We also show that the processor utilization bound of us-edf{m/(2m−1)} can be improved by using virtual clustering. Since neither partitioned nor global strategies dominate over the other, cluster-based scheduling is a natural direction for research towards achieving improved processor utilization bounds.
Resumo:
Modeling the fundamental performance limits of Wireless Sensor Networks (WSNs) is of paramount importance to understand their behavior under the worst-case conditions and to make the appropriate design choices. This is particular relevant for time-sensitive WSN applications, where the timing behavior of the network protocols (message transmission must respect deadlines) impacts on the correct operation of these applications. In that direction this paper contributes with a methodology based on Network Calculus, which enables quick and efficient worst-case dimensioning of static or even dynamically changing cluster-tree WSNs where the data sink can either be static or mobile. We propose closed-form recurrent expressions for computing the worst-case end-to-end delays, buffering and bandwidth requirements across any source-destination path in a cluster-tree WSN. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs. Finally, we demonstrate the validity and analyze the accuracy of our methodology through a comprehensive experimental study using commercially available technology, namely TelosB motes running TinyOS.
Resumo:
Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.
Resumo:
Modeling the fundamental performance limits of Wireless Sensor Networks (WSNs) is of paramount importance to understand their behavior under worst-case conditions and to make the appropriate design choices. In that direction this paper contributes with an analytical methodology for modeling cluster-tree WSNs where the data sink can either be static or mobile. We assess the validity and pessimism of analytical model by comparing the worst-case results with the values measured through an experimental test-bed based on Commercial-Off- The-Shelf (COTS) technologies, namely TelosB motes running TinyOS.
Resumo:
Synchronization is a challenging and important issue for time-sensitive Wireless Sensor Networks (WSN) since it requires a mutual spatiotemporal coordination between the nodes. In that concern, the IEEE 802.15.4/ZigBee protocols embody promising technologies for WSNs, but are still ambiguous on how to efficiently build synchronized multiple-cluster networks, specifically for the case of cluster-tree topologies. In fact, the current IEEE 802.15.4/ZigBee specifications restrict the synchronization to beacon-enabled (by the generation of periodic beacon frames) star networks, while they support multi-hop networking in mesh topologies, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this issue by unveiling the ambiguities regarding the use of the cluster-tree topology and proposing a synchronization mechanism based on Time Division Beacon Scheduling (TDBS) to build cluster-tree WSNs. In addition, we propose a methodology for efficiently managing duty-cycles in every cluster, ensuring the fairest use of bandwidth resources. The feasibility of the TDBS mechanism is clearly demonstrated through an experimental test-bed based on our open-source implementation of the IEEE 802.15.4/ZigBee protocols.