988 resultados para silicate cement
Resumo:
Durability is a significant issue to focus on for newly developed structural lightweight cement composite (ULCC). This paper presents an experimental study to evaluate the resistance of ULCC to water and chloride ion penetration. Chloride penetrability and sorptivity were evaluated for ULCC (unit weight about 1450 kg/m3) and compared with those of a normal weight concrete (NWC), a lightweight aggregate concrete (LWC), and an ultra lightweight composite with proprietary cementitious binder (DB) (unit weight about 1450 kg/m3) at similar compressive strength of about 60 MPa. Rapid chloride penetrability test, rapid migration test, water absorption (sorptivity) test, and water permeability test were conducted on these mixtures. Results indicate that ULCC and DB had comparable performance. Compared with control LWC and NWC at similar strength level, the ULCC and DB mixtures had higher resistance to chloride ion penetration, lower water absorption and virtually impermeable to water penetration.
Resumo:
Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 kg/m3 and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (≥ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low E-modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations.
Resumo:
The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700–775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm−1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm−1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm−1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.
Resumo:
This paper presents an experimental investigation of the flexural and shear bond characteristics of thin layer polymer cement mortared concrete masonry. It is well known that the bond characteristics of masonry depend upon the mortar type, the techniques of dispersion of mortar and the surface texture of concrete blocks; there exists an abundance of literature on the conventional 10 mm thick cement mortared masonry bond; however, 1-4 mm thick polymer cement mortared masonry bond is not yet well researched. This paper reports a study on the examination of the effect of mortar compositions, dispersion methods and unit surface textures to the flexural and shear bond characteristics of thin layer mortared concrete masonry. A non-contact digital image correlation method was adopted for the measurement of strains at the unit-mortar interface in this research. All mortar joints have been carefully prepared to ensure achievement of the desired thin layer mortar thickness on average. The results exhibit that the bond strength of thin mortar layered concrete masonry with polymer cement mortar is higher than that of the conventional masonry; moreover the unit surface texture and the mortar dispersion methods are found to have significant influence on the flexural and shear bond characteristics. From the experimental results, a correlation between the flexural and the shear bond strengths has been determined and is presented in this paper.
Resumo:
We have used scanning electron microscopy with energy dispersive X-ray analysis to determine the precise formula of plumbotsumite, a rare lead silicate mineral of formula Pb5(OH)10Si4O8. This study forms the first systematic study of plumbotsumite from the Bigadic deposits, Turkey. Vibrational spectroscopy was used to assess the molecular structure of plumbotsumite as the structure is not known. The mineral is characterized by sharp Raman bands at 1047, 1055 and 1060 cm−1 assigned to SiO stretching vibrational modes and sharp Raman bands at 673, 683 and 697 cm−1 assigned to OSiO bending modes. The observation of multiple bands offers support for a layered structure with variable SiO3 structural units. Little information may be obtained from the infrared spectra because of broad spectral profiles. Intense Raman bands at 3510, 3546 and 3620 cm−1 are ascribed to OH stretching modes. Evidence for the presence of water in the plumbotsumite structure was inferred from the infrared spectra.
Resumo:
We have studied the mineral olmiite CaMn\[SiO3(OH)](OH) which forms a series with its calcium analogue poldevaartite CaCa\[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis , Raman and infrared spectroscopy. Chemical analysis shows the mineral is pure and contains only calcium and manganese in the formula. Thermogravimetric analysis proves the mineral decomposes at 502°C with a mass loss of 8.8% compared with the theoretical mass loss of 8.737%. A strong Raman band at 853 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations.Two intense Raman bands observed at 3511 and 3550 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of olmiite.
Resumo:
We have used a combination of scanning electron microscopy with EDX and vibrational spectroscopy to study the mineral ardennite-(As). The mineral ardennite-(As) of accepted formula Mn2þ 4 (Al,Mg)6(Si3O10)(SiO4)2(AsO4,VO4)(OH)6 is a silicate mineral which may contain arsenate and/or vanadates anions. Because of the oxyanions present, the mineral lends itself to analysis by Raman and infrared spectroscopy. Qualitative chemical analysis shows a homogeneous phase, composed by Si, Mn, Al and As. Ca and V were also observed in partial substitution for Mn and As. Raman bands at 1197, 1225, 1287 and 1394 cm-1 are assigned to SiO stretching vibrations. The strong Raman bands at 779 and 877 cm-1 are assigned to the AsO3- 4 antisymmetric and symmetric stretching vibrations. The Raman band at 352 cm-1 is assigned to the m2 symmetric bending vibration. The series of Raman bands between 414 and 471 cm-1 are assigned to the m4 out of plane bending modes of the AsO3-4 units. Intense Raman bands observed at 301 and 314 cm-1 are attributed to the MnO stretching and bending vibrations. Raman bands at 3041, 3149, 3211 and 3298 cm-1 are attributed to the stretching vibrations of OH units. There is vibrational spectroscopic evidence for the presence of water adsorbed on the ardennite-(As) surfaces.
Resumo:
We have studied the hydrated hydroxyl silicate mineral inesite of formula Ca2(Mn,Fe)7Si10O28(OH)⋅5H2O using a combination of scanning electron microscopy with EDX and Raman and infrared spectroscopy. SEM analysis shows the mineral to be a pure monomineral with no impurities. Semiquantitative analysis shows a homogeneous phase, composed by Ca, Mn2+, Si and P, with minor amounts of Mg and Fe. Raman spectrum shows well resolved component bands at 997, 1031, 1051, and 1067 cm-1 attributed to a range of SiO symmetric stretching vibrations of [Si10O28] units. Infrared bands found at 896, 928, 959 and 985 cm-1 are attributed to the OSiO antisymmetric stretching vibrations. An intense broad band at 653 cm-1 with shoulder bands at 608, 631 and 684 cm-1 are associated with the bending modes of the OSiO units of the 6- and 8-membered rings of the [Si10O28] units. The sharp band at 3642 cm-1 with shoulder bands at 3612 and 3662 cm-1 are assigned to the OH stretching vibrations of the hydroxyl units. The broad Raman band at 3420 cm-1 with shoulder bands at 3362 and 3496 cm-1 are assigned to the water stretching vibrations. The application of vibrational spectroscopy has enabled an assessment of the molecular structure of inesite to be undertaken.
Resumo:
Bond characteristics of masonry are partly affected by the type of mortar used, the techniques of dispersion of mortar and the surface texture of the concrete blocks. Additionally it is understood from the studies on conventional masonry, the bond characteristics are influenced by masonry age and curing methods as well as dryness/dampness at the time of testing. However, all these effects on bond for thin bed masonry containing polymer cement mortar are not well researched. Therefore, the effect of ageing and curing method on bond strength of masonry made with polymer cement mortar was experimentally investigated as part of an ongoing bond strength research program on thin bed concrete masonry at Queensland University of technology. This paper presents the experimental investigation of the flexural and shears bond characteristics of thin bed concrete masonry of varying age/ curing methods. Since, the polymer cement mortar is commonly used in thin bed masonry; bond development through two different curing conditions (dry/wet) was investigated in this research work. The results exhibit that the bond strength increases with the age under the wet and dry curing conditions; dry curing produce stronger bond and is considered as an advantage towards making this form of thin bed masonry better sustainable.
Resumo:
Periodontal disease is characterized by the destruction of the tissues that attach the tooth to the alveolar bone. Various methods for regenerative periodontal therapy including the use of barrier membranes, bone replacement grafts, and growth factor delivery have been investigated; however, true regeneration of periodontal tissue is still a significant challenge to scientists and clinicians. The focus on periodontal tissue engineering has shifted from attempting to recreate tissue replacements/constructs to the development of biomaterials that incorporate and release regulatory signals to achieve in situ periodontal regeneration. The release of ions and molecular cues from biomaterials may help to unlock latent regenerative potential in the body by regulating cell proliferation and differentiation towards different lineages (e.g. osteoblasts and cementoblasts). Silicate-based bioactive materials, including bioactive silicate glasses and ceramics, have become the materials of choice for periodontal regeneration, due to their favourable osteoconductivity and bioactivity. This article will focus on the most recent advances in the in vitro and in vivo biological application of silicate-based ceramics, specifically as it relates to periodontal tissue engineering.
Resumo:
Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 kg/m3 and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (≥ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.
Resumo:
We have studied the mineral analcime using a combination of scanning electron microscopy with energy dispersive spectroscopy and vibrational spectroscopy. The mineral analcime Na2(Al4SiO4O12)·2H2O is a crystalline sodium silicate. Chemical analysis shows the mineral contains a range of elements including Na, Al, Fe2+ and Si. The mineral is characterized by intense Raman bands observed at 1052, 1096 and 1125 cm−1. The infrared bands are broad; nevertheless bands may be resolved at 1006 and 1119 cm−1. These bands are assigned to SiO stretching vibrational modes. Intense Raman band at 484 cm−1 is attributed to OSiO bending modes. Raman bands observed at 2501, 3542, 3558 and 3600 cm−1 are assigned to the stretching vibrations of water. Low intensity infrared bands are noted at 3373, 3529 and 3608 cm−1. The observation of multiple water bands indicate that water is involved in the structure of analcime with differing hydrogen bond strengths. This concept is supported by the number of bands in the water bending region. Vibrational spectroscopy assists with the characterization of the mineral analcime.
Resumo:
The mineral pectolite NaCa2Si3O8(OH) is a crystalline sodium calcium silicate which has the potential to be used in plaster boards and in other industrial applications. Raman bands at 974 and 1026 cm−1 are assigned to the SiO stretching vibrations of linked units of Si3O8 units. Raman bands at 974 and 998 cm−1 serve to identify Si3O8 units. The broad Raman band at around 936 cm−1 is attributed to hydroxyl deformation modes. Intense Raman band at 653 cm−1 is assigned to OSiO bending vibration. Intense Raman bands in the 2700–3000 cm−1 spectral range are assigned to OH stretching vibrations of the OH units in pectolite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the silicate mineral pectolite.