902 resultados para short-term operation
Resumo:
Effective legislation and standards for the coordination procedures between consumers, producers and the system operator supports the advances in the technologies that lead to smart distribution systems. In short-term (ST) maintenance scheduling procedure, the energy producers in a distribution system access to the long-term (LT) outage plan that is released by the distribution system operator (DSO). The impact of this additional information on the decision-making procedure of producers in ST maintenance scheduling is studied in this paper. The final ST maintenance plan requires the approval of the DSO that has the responsibility to secure the network reliability and quality, and other players have to follow the finalized schedule. Maintenance scheduling in the producers’ layer and the coordination procedure between them and the DSO is modelled in this paper. The proposed method is applied to a 33-bus distribution system.
Resumo:
In this paper, a hybrid intelligent approach is proposed for short-term electricity prices forecasting in a competitive market. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In music genre classification, most approaches rely on statistical characteristics of low-level features computed on short audio frames. In these methods, it is implicitly considered that frames carry equally relevant information loads and that either individual frames, or distributions thereof, somehow capture the specificities of each genre. In this paper we study the representation space defined by short-term audio features with respect to class boundaries, and compare different processing techniques to partition this space. These partitions are evaluated in terms of accuracy on two genre classification tasks, with several types of classifiers. Experiments show that a randomized and unsupervised partition of the space, used in conjunction with a Markov Model classifier lead to accuracies comparable to the state of the art. We also show that unsupervised partitions of the space tend to create less hubs.
Resumo:
The current regulatory framework for maintenance outage scheduling in distribution systems needs revision to face the challenges of future smart grids. In the smart grid context, generation units and the system operator perform new roles with different objectives, and an efficient coordination between them becomes necessary. In this paper, the distribution system operator (DSO) of a microgrid receives the proposals for shortterm (ST) planned outages from the generation and transmission side, and has to decide the final outage plans, which is mandatory for the members to follow. The framework is based on a coordination procedure between the DSO and other market players. This paper undertakes the challenge of optimization problem in a smart grid where the operator faces with uncertainty. The results show the effectiveness and applicability of the proposed regulatory framework in the modified IEEE 34- bus test system.
Resumo:
This paper proposes artificial neural networks in combination with wavelet transform for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. Results from a real-world case study are presented. A comparison is carried out, taking into account the results obtained with other approaches. Finally, conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.
Resumo:
Distribution systems are the first volunteers experiencing the benefits of smart grids. The smart grid concept impacts the internal legislation and standards in grid-connected and isolated distribution systems. Demand side management, the main feature of smart grids, acquires clear meaning in low voltage distribution systems. In these networks, various coordination procedures are required between domestic, commercial and industrial consumers, producers and the system operator. Obviously, the technical basis for bidirectional communication is the prerequisite of developing such a coordination procedure. The main coordination is required when the operator tries to dispatch the producers according to their own preferences without neglecting its inherent responsibility. Maintenance decisions are first determined by generating companies, and then the operator has to check and probably modify them for final approval. In this paper the generation scheduling from the viewpoint of a distribution system operator (DSO) is formulated. The traditional task of the DSO is securing network reliability and quality. The effectiveness of the proposed method is assessed by applying it to a 6-bus and 9-bus distribution system.
Resumo:
Short-term risk management is highly dependent on long-term contractual decisions previously established; risk aversion factor of the agent and short-term price forecast accuracy. Trying to give answers to that problem, this paper provides a different approach for short-term risk management on electricity markets. Based on long-term contractual decisions and making use of a price range forecast method developed by the authors, the short-term risk management tool presented here has as main concern to find the optimal spot market strategies that a producer should have for a specific day in function of his risk aversion factor, with the objective to maximize the profits and simultaneously to practice the hedge against price market volatility. Due to the complexity of the optimization problem, the authors make use of Particle Swarm Optimization (PSO) to find the optimal solution. Results from realistic data, namely from OMEL electricity market, are presented and discussed in detail.
Resumo:
In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.
Resumo:
This paper is on the maximization of total profit in a day-ahead market for a price-taker producer needing a short-term scheduling for wind power plants coordination with concentrated solar power plants, having thermal energy storage systems. The optimization approach proposed for the maximization of profit is a mixed-integer linear programming problem. The approach considers not only transmission grid constraints, but also technical operating constraints on both wind and concentrated solar power plants. Then, an improved short-term scheduling coordination is provided due to the more accurate modelling presented in this paper. Computer simulation results based on data for the Iberian wind and concentrated solar power plants illustrate the coordination benefits and show the effectiveness of the approach.
Resumo:
As it is well known, competitive electricity markets require new computing tools for generation companies to enhance the management of its resources. The economic value of the water stored in a power system reservoir is crucial information for enhancing the management of the reservoirs. This paper proposes a practical deterministic approach for computing the short-term economic value of the water stored in a power system reservoir, emphasizing the need to considerer water stored as a scarce resource with a short-term economic value. The paper addresses a problem concerning reservoirs with small storage capacities, i.e., the reservoirs considered as head-sensitivity. More precisely, the respective hydro plant is head-dependent and a pure linear approach is unable to capture such consideration. The paper presents a case study supported by the proposed practical deterministic approach and applied on a real multi-reservoir power system with three cascaded reservoirs, considering as input data forecasts for the electric energy price and for the natural inflow into the reservoirs over the schedule time horizon. The paper presents various water schedules due to different final stored water volume conditions on the reservoirs. Also, it presents the respective economic value of the water for the reservoirs at different stored water volume conditions.
Resumo:
Epidemiological studies have shown the effect of diet on the incidence of chronic diseases; however, proper planning, designing, and statistical modeling are necessary to obtain precise and accurate food consumption data. Evaluation methods used for short-term assessment of food consumption of a population, such as tracking of food intake over 24h or food diaries, can be affected by random errors or biases inherent to the method. Statistical modeling is used to handle random errors, whereas proper designing and sampling are essential for controlling biases. The present study aimed to analyze potential biases and random errors and determine how they affect the results. We also aimed to identify ways to prevent them and/or to use statistical approaches in epidemiological studies involving dietary assessments.
Resumo:
This paper is on the maximization of total profit in a day-ahead market for a price-taker producer needing a short-term scheduling for wind power plants coordination with concentrated solar power plants, having thermal energy storage systems. The optimization approach proposed for the maximization of profit is a mixed-integer linear programming problem. The approach considers not only transmission grid constraints, but also technical operating constraints on both wind and concentrated solar power plants. Then, an improved short-term scheduling coordination is provided due to the more accurate modelling presented in this paper. Computer simulation results based on data for the Iberian wind and concentrated solar power plants illustrate the coordination benefits and show the effectiveness of the approach.
Resumo:
In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn.
Resumo:
The computations performed by the brain ultimately rely on the functional connectivity between neurons embedded in complex networks. It is well known that the neuronal connections, the synapses, are plastic, i.e. the contribution of each presynaptic neuron to the firing of a postsynaptic neuron can be independently adjusted. The modulation of effective synaptic strength can occur on time scales that range from tens or hundreds of milliseconds, to tens of minutes or hours, to days, and may involve pre- and/or post-synaptic modifications. The collection of these mechanisms is generally believed to underlie learning and memory and, hence, it is fundamental to understand their consequences in the behavior of neurons.(...)