996 resultados para short interspersed repeat
Resumo:
5-aza-2'-deoxycytidine (DAC) is a cytidine analogue that strongly inhibits DNA methylation, and was recently approved for the treatment of myelodysplastic syndromes (MDS). To maximize clinical results with DAC, we investigated its use as an anti-cancer drug. We also investigated mechanisms of resistance to DAC in vitro in cancer cell lines and in vivo in MDS patients after relapse. We found DAC sensitized cells to the effect of 1-β-D-Arabinofuranosylcytosine (Ara-C). The combination of DAC and Ara-C or Ara-C following DAC showed additive or synergistic effects on cell death in four human leukemia cell lines in vitro, but antagonism in terms of global methylation. RIL gene activation and H3 lys-9 acetylation of short interspersed elements (Alu). One possible explanation is that hypomethylated cells are sensitized to cell killing by Ara-C. Turning to resistance, we found that the IC50 of DAC differed 1000 fold among and was correlated with the dose of DAC that induced peak hypomethylation of long interspersed nuclear elements (LINE) (r=0.94, P<0.001), but not with LINE methylation at baseline (r=0.05, P=0.97). Sensitivity to DAC did not significantly correlate with sensitivity to another hypomethylating agent 5-azacytidine (AZA) (r=0.44, P=0.11). The cell lines most resistant to DAC had low dCK, hENT1, and hENT2 transporters and high cytosine deaminase (CDA). In an HL60 leukemia cell line, resistance to DAC could be rapidly induced by drug exposure, and was related to a switch from monoallelic to biallelic mutation of dCK or a loss of wild type DCK allele. Furthermore, we showed that DAC induced DNA breaks evidenced by histone H2AX phosphorylation and increased homologous recombination rates 7-10 folds. Finally, we found there were no dCK mutations in MDS patients after relapse. Cytogenetics showed that three of the patients acquired new abnormalities at relapse. These data suggest that in vitro spontaneous and acquired resistance to DAC can be explained by insufficient incorporation of drug into DNA. In vivo resistance to DAC is likely due to methylation-independent pathways such as chromosome changes. The lack of cross resistance between DAC and AZA is of potential clinical relevance, as is the combination of DAC and Ara-C. ^
Resumo:
The Saccharomyces cerevisiae SGS1 gene encodes a RecQ-like DNA helicase, human homologues of which are implicated in the genetic instability disorders, Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), and Werner syndrome (WS). Telomerase-negative yeast cells can recover from senescence via two recombinational telomere elongation pathways. The “type I” pathway generates telomeres with large blocks of telomeric and subtelomeric sequences and short terminal repeat tracts. The “type II” pathway generates telomeres with extremely long heterogeneous terminal repeat tracts, reminiscent of the long telomeres observed in telomerase-deficient human tumors and tumor-derived cell lines. Here, we report that telomerase-negative (est2) yeast cells lacking SGS1 senesced more rapidly, experienced a higher rate of telomere erosion, and were delayed in the generation of survivors. The est2 sgs1 survivors that were generated grew poorly, arrested in G2/M and possessed exclusively type I telomeres, implying that SGS1 is critical for the type II pathway. The mouse WS gene suppressed the slow growth and G2/M arrest phenotype of est2 sgs1 survivors, arguing that the telomeric function of SGS1 is conserved. Reintroduction of SGS1 into est2 sgs1 survivors restored growth rate and extended terminal tracts by ≈300 bp. Both phenotypes were absolutely dependent on Sgs1 helicase activity. Introduction of an sgs1 carboxyl-terminal truncation allele with helicase activity restored growth rate without extending telomeres in most cases, demonstrating that type II telomeres are not necessary for normal growth in the absence of telomerase.
Resumo:
An allele of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene (Md-ACS1), the transcript and translated product of which have been identified in ripening apples (Malus domestica), was isolated from a genomic library of the apple cultivar, Golden Delicious. The predicted coding region of this allele (ACS1-2) showed that seven nucleotide substitutions in the corresponding region of ACS1-1 resulted in just one amino acid transition. A 162-bp sequence characterized as a short interspersed repetitive element retrotransposon was inserted in the 5′-flanking region of ACS1-2 corresponding to position −781 in ACS1-1. The XhoI site located near the 3′ end of the predicted coding region of ACS1-2 was absent from the reverse transcriptase-polymerase chain reaction product, revealing that exclusive transcription from ACS1-1 occurs during ripening of cv Golden Delicious fruit. DNA gel-blot and polymerase chain reaction analyses of genomic DNAs showed clearly that apple cultivars were either heterozygous for ACS1-1 and ACS1-2 or homozygous for each type. RNA gel-blot analysis of the ACS1-2 homozygous Fuji apple, which produces little ethylene and has a long storage life, demonstrated that the level of transcription from ACS1-2 during the ripening stage was very low.
Resumo:
Plasmodium falciparum is the agent of malignant malaria, one of mankind's most severe maladies. The parasite exhibits antigenic polymorphisms that have been postulated to be ancient. We have proposed that the extant world populations of P. falciparum have derived from one single parasite, a cenancestor, within the last 5,000–50,000 years. This inference derives from the virtual or complete absence of synonymous nucleotide polymorphisms at genes not involved in immune or drug responses. Seeking to conciliate this claim with extensive antigenic polymorphism, we first note that allele substitutions or polymorphisms can arise very rapidly, even in a single generation, in large populations subject to strong natural selection. Second, new alleles can arise not only by single-nucleotide mutations, but also by duplication/deletion of short simple-repeat DNA sequences, a process several orders of magnitude faster than single-nucleotide mutation. We analyze three antigenic genes known to be extremely polymorphic: Csp, Msp-1, and Msp-2. We identify regions consisting of tandem or proximally repetitive short DNA sequences, including some previously unnoticed. We conclude that the antigenic polymorphisms are consistent with the recent origin of the world populations of P. falciparum inferred from the analysis of nonantigenic genes.
Resumo:
SINE (short interspersed element) insertion analysis elucidates contentious aspects in the phylogeny of toothed whales and dolphins (Odontoceti), especially river dolphins. Here, we characterize 25 informative SINEs inserted into unique genomic loci during evolution of odontocetes to construct a cladogram, and determine a total of 2.8 kb per taxon of the flanking sequences of these SINE loci to estimate divergence times among lineages. We demonstrate that: (i) Odontocetes are monophyletic; (ii) Ganges River dolphins, beaked whales, and ocean dolphins diverged (in this order) after sperm whales; (iii) three other river dolphin taxa, namely the Amazon, La Plata, and Yangtze river dolphins, form a monophyletic group with Yangtze River dolphins being the most basal; and (iv) the rapid radiation of extant cetacean lineages occurred some 28–33 million years B.P., in strong accord with the fossil record. The combination of SINE and flanking sequence analysis suggests a topology and set of divergence times for odontocete relationships, offering alternative explanations for several long-standing problems in cetacean evolution.
Resumo:
Human complement factor H controls spontaneous activation of complement in plasma and appears to play a role in distinguishing host cells from activators of the alternative pathway of complement. In both mice and humans, the protein is composed of 20 homologous short consensus repeat (SCR) domains. The size of the protein suggests that portions of the structure outside the known C3b binding site (SCR 1-4) possess a significant biological role. We have expressed the full-length cDNA of factor H in the baculovirus system and have shown the recombinant protein to be fully active. Mutants of this full-length protein have now been prepared, purified, and examined for cofactor activity and binding to C3b and heparin. The results demonstrate (i) that factor H has at least three sites that bind C3b, (ii) that one of these sites is located in SCR domains 1-4, as has been shown by others, (iii) that a second site exists in the domain 6-10 region, (iv) that a third site resides in the SCR 16-20 region, and (v) that two heparin binding sites exist in factor H, one near SCR 13 and another in the SCR 6-10 region. Functional assays demonstrated that only the first C3b site located in SCR 1-4 expresses factor I cofactor activity. Mutant proteins lacking any one of the three C3b binding sites exhibited 6- to 8-fold reductions in affinity for C3b on sheep erythrocytes, indicating that all three sites contribute to the control of complement activation on erythrocytes. The identification of multiple functionally distinct sites on factor H clarifies many of the heretofore unexplainable behaviors of this protein, including the heterogeneous binding of factor H to surface-bound C3b, the effects of trypsin cleavage, and the differential control of complement activation on activators and nonactivators of the alternative pathway of complement.
Resumo:
Li and Chakravarti [Li, C.C. & Chakravarti, A. (1994) Hum. Hered. 44, 100-109] compared the probability (MO) of a random match between the two DNA profiles of a pair of individuals drawn from a random-mating population to the probability (MF) of the match between a pair of random individuals drawn from a subdivided population. The level of heterogeneity in this subdivided population is measured by the parameter F, where there is no subdivision when F = 0 and increasing values of F indicate increasing subdivisions. Li and Chakravarti concluded that it is conservative to use the match probability MO, which is derived under the assumption that the two individuals are drawn from a homogeneous random-mating population without subdivision. However, MO may not be always greater than MF, even for biologically reasonable values of F. We explore here those mathematical conditions under which MO is less than MF, and we find that MO is not conservative mainly when there is an allele with a much higher frequency than all the other alleles. When empirical data for both variable number of tandem repeat (VNTR) and short tandem repeat (STR) systems are evaluated, we find that in the majority of cases MO represents a conservative probability of a match, and so the subdivision of human populations may usually be ignored for a random match, although not, of course, for relatives. Loci for which MO is not conservative should be avoided for forensic inference.
Resumo:
The pathogenic Gram-positive bacterium Streptococcus pyogenes (group A streptococcus) is the causative agent of numerous suppurative diseases of human skin. The M protein of S. pyogenes mediates the adherence of the bacterium to keratinocytes, the most numerous cell type in the epidermis. In this study, we have constructed and analyzed a series of mutant M proteins and have shown that the C repeat domain of the M molecule is responsible for cell recognition. The binding of factor H, a serum regulator of complement activation, to the C repeat region of M protein blocked bacterial adherence. Factor H is a member of a large family of complement regulatory proteins that share a homologous structural motif termed the short consensus repeat. Membrane cofactor protein (MCP), or CD46, is a short consensus repeat-containing protein found on the surface of keratinocytes, and purified MCP could competitively inhibit the adherence of S. pyogenes to these cells. Furthermore, the M protein was found to bind directly to MCP, whereas mutant M proteins that lacked the C repeat domain did not bind MCP, suggesting that recognition of MCP plays an important role in the ability of the streptococcus to adhere to keratinocytes.
Resumo:
Entre as muitas aplicações das tecnologias de identificação biológica humana, estão as finalidades forenses. O objetivo desta pesquisa foi verificar frequências alélicas de Short Tandem Repeat (STR) e os parâmetros estatísticos de interesse em genética de populações e forense para desenvolver o primeiro banco de dados populacional de DNA na Faculdade de Odontologia de Bauru, Universidade de São Paulo, (FOB/USP) para futuros usos forenses. Frequências alélicas de 15 locos autossômicos e do marcador de gênero amelogenina foram determinadas utilizando amostras de 200 μL de saliva doados por 296 alunos de graduação da FOB/USP, com idade ≥ 18 anos, após aprovação ética. Os testes laboratoriais foram feitos com kits comerciais. Resultados e parâmetros estatísticos foram obtidos por meio de programas clássicos: GeneMapper-ID-X, MS Excel 2002 versão 10.6871.6870, GenAlEx 6.5 e Arlequin 3.5, comparando quatro populações (brasileira, portuguesa, norte-americana e a população deste estudo). Os locos mais polimórficos foram D18S51 (17 alelos) e FGA (15 alelos), seguidos pelo D21S11 (13 alelos) e os menos polimórficos foram D16S539 e TH01 (7 alelos cada). A análise comparativa com amostra da população brasileira proveniente de estudos anteriores (n > 100.000) pelo teste goodness of fit X2 index não mostrou diferenças significativas entre estes grupos (p = 0,9999). Outros parâmetros estatísticos foram calculados comparando as populações: local (deste estudo), portuguesa e norte-americana. A análise de variância molecular (AMOVA) entre as três populações, entre as pessoas da mesma população e para cada pessoa de cada população mostrou que existe uma elevada variância individual (99%), que esta variância é mantida uniformemente entre as pessoas da mesma amostra/região (1%) e entre as três populações estudadas (0%). O estudo confirmou o elevado grau de polimorfismo e a alta heterozigosidade (96,5%) da população. Houve diferença significativa quanto ao gênero (79,7% mulheres) quando comparado à população brasileira em geral (50,4%), explicada pelas características do corpo discente da FOB/USP composto por 80,6% de pessoas do gênero feminino. Interessante foi a observação de uma microvariante alélica no loco D18S51, fora da escada padrão e da escala de abrangência do kit, correspondente ao alelo 29, ainda não definida na base de dados internacional (STRBase, atualizada em 07/08/2015). Esta microvariante deverá ser confirmada por testes familiares e sequenciamento de DNA para verificar a possibilidade de outra ocorrência familiar ou duplicação de nucleotídeos. No futuro, os dados obtidos neste estudo devem ser incorporados ao banco de dados da população brasileira e podem ser considerados como referência genética da população regional, ajudando a elucidar casos forenses. Após a confirmação, a potencial nova microvariante alélica contribuirá para a base de dados internacional STRBase.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-05
Resumo:
One way to achieve the large sample sizes required for genetic studies of complex traits is to combine samples collected by different groups. It is not often clear, however, whether this practice is reasonable from a genetic perspective. To assess the comparability of samples from the Australian and the Netherlands twin studies, we estimated F,, (the proportion of total genetic variability attributable to genetic differences between cohorts) based on 359 short tandem repeat polymorphisms in 1068 individuals. IF,, was estimated to be 0.30% between the Australian and the Netherlands cohorts, a smaller value than between many European groups. We conclude that it is reasonable to combine the Australian and the Netherlands samples for joint genetic analyses.
Resumo:
When a suspect's DNA profile is admitted into court as a match to evidence the probability of the perpetrator being another individual must be calculated from database allele frequencies. The two methods used for this calculation are phenotypic frequency and likelihood ratio. Neither of these calculations takes into account substructuring within populations. In these substructured populations the frequency of homozygotes increases and that of heterozygotes usually decreases. The departure from Hardy- Weinberg expectation in a sample population can be estimated using Sewall Wright's Fst statistic. Fst values were calculated in four populations of African descent by comparing allele frequencies at three short tandem repeat loci. This was done by amplifying the three loci in each sample using the Polymerase Chain Reaction and separating these fragments using polyacrylamide gel electrophoresis. The gels were then silver stained and autoradiograms taken, from which allele frequencies were estimated. Fst values averaged 0.007+- 0.005 within populations of African descent and 0.02+- 0.01 between white and black populations.
Resumo:
Arginase 1 deficiency, a urea cycle disorder resulting from an inability of the body to convert arginine into urea, results in hyperargininemia and sporadic episodes of hyperammonemia. Arginase 1 deficiency can lead to a range of developmental disorders and progressive spastic diplegia in children, and current therapeutic options are limited. Clustered regularly interspaced short palindromic repeat (CRISPR) /CRISPR associated protein (Cas) 9 gene editing systems serve as a novel means of treating genetic disorders such as Arginase 1 (ARG1) deficiency, and must be thoroughly examined to determine their curative capabilities. In these experiments numerous guide RNAs and CRISPR/Cas9 systems targeting the ARG1 gene were designed and observed by heteroduplex assay for their targeting capabilities and cleavage efficiencies in multiple cell lines. The CRISPR/Cas9 system utilized in these experiments, along with a panel of guide RNAs targeting various locations in the arginase 1 gene, successfully produced targeted cleavage in HEK293, MCF7, A549, K562, HeLa, and HepG2 cells; however, targeted cleavage in human dermal fibroblasts, blood outgrowth endothelial cells, and induced pluripotent stem cells was not observed. Additionally, a CRISPR/Cas system involving partially inactivated Cas9 was capable of producing targeted DNA cleavage in intron 1 of ARG1, while a Cas protein termed Cpf1 was incapable of producing targeted cleavage. These results indicate a complex set of variables determining the CRISPR/Cas9 systems’ capabilities in the cell lines and primary cells tested. By examining epigenetic factors and alternative CRISPR/Cas9 gene targeting systems, the CRISPR/Cas9 system can be more thoroughly considered in its ability to act as a means towards editing the genome of arginase 1-deficient individuals.
Resumo:
The rumen is home to a diverse population of microorganisms encompassing all three domains of life: Bacteria, Archaea, and Eukarya. Viruses have also been documented to be present in large numbers; however, little is currently known about their role in the dynamics of the rumen ecosystem. This research aimed to use a comparative genomics approach in order to assess the potential evolutionary mechanisms at work in the rumen environment. We proposed to do this by first assessing the diversity and potential for horizontal gene transfer (HGT) of multiple strains of the cellulolytic rumen bacterium, Ruminococcus flavefaciens, and then by conducting a survey of rumen viral metagenome (virome) and subsequent comparison of the virome and microbiome sequences to ascertain if there was genetic information shared between these populations. We hypothesize that the bacteriophages play an integral role in the community dynamics of the rumen, as well as driving the evolution of the rumen microbiome through HGT. In our analysis of the Ruminococcus flavefaciens genomes, there were several mobile elements and clustered regularly interspaced short palindromic repeat (CRISPR) sequences detected, both of which indicate interactions with bacteriophages. The rumen virome sequences revealed a great deal of diversity in the viral populations. Additionally, the microbial and viral populations appeared to be closely associated; the dominant viral types were those that infect the dominant microbial phyla. The correlation between the distribution of taxa in the microbiome and virome sequences as well as the presence of CRISPR loci in the R. flavefaciens genomes, suggested that there is a “kill-the-winner” community dynamic between the viral and microbial populations in the rumen. Additionally, upon comparison of the rumen microbiome and rumen virome sequences, we found that there are many sequence similarities between these populations indicating a potential for phage-mediated HGT. These results suggest that the phages represent a gene pool in the rumen that could potentially contain genes that are important for adaptation and survival in the rumen environment, as well as serving as a molecular ‘fingerprint’ of the rumen ecosystem.