106 resultados para shoaling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

New geochemical proxy data from Bermuda Rise piston cores reveal ocean and climate conditions in the northern Sargasso Sea during marine isotope stage 3. Using ?18O on the planktonic foraminifer Globigerinoides ruber, we can correlate explicitly with every stadial/interstadial change in Greenland ice between ~32 and 58 ka. These data suggest repetitive changes of ~4°C in the annual average sea surface temperature (SST), with maximum cooling comparable to or greater than SST during glacial maximum conditions. The extent of SST depression is about the same for typical stadial events and for Heinrich events 4 and 5, which we have identified on the Bermuda Rise by traces of ice rafting. Benthic foraminiferal d13C decreases during every stadial event, consistent with reduced production of the deepest component of North Atlantic Deep Water and shoaling of its interface with Antarctic Bottom Water. This interpretation is supported by benthic Cd/Ca data from the climate cycle associated with interstadial 8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in circulation associated with the shoaling of the Isthmus of Panama and the Caribbean carbonate crash in the Miocene were investigated using Nd isotopes from fossil fish teeth and debris from two sites in the Caribbean Basin (Ocean Drilling Program Sites 998 and 999) and two sites in the eastern equatorial Pacific (Sites 846 and 1241). The total range for e-Nd values measured from 18 to 4.5 Ma in the Caribbean is -7.3 to 0. These values are higher than Atlantic water masses (~-11) and range up to values equivalent to contemporaneous Pacific water masses, confirming that flow into the Caribbean Basin was composed of a mixture of Pacific and Atlantic waters, with an upper limit of almost pure Pacific-sourced waters. Throughout the Caribbean record, particularly during the carbonate crash (10-12 Ma), low carbonate mass accumulation rates (MARs) correlate with more radiogenic e-Nd values, indicating increased flow of corrosive Pacific intermediate water into the Caribbean Basin during intervals of dissolution. This flow pattern agrees with results from general ocean circulation models designed to study the effect of the shoaling of the Central American Seaway. Low carbonate MARs and high e-Nd values also correlate with intervals of increased Northern Component Water production and, therefore, enhanced conveyor circulation, suggesting that the conveyor may respond to changes in circulation associated with shoaling of the Central American Seaway. Reduced Pacific throughflow related to shoaling of the seaway led to a gradual increase in carbonate preservation and more Atlantic-like e-Nd values following the carbonate crash.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxygen isotope record of the planktonic foraminifera Globigerina bulloides and Neogloboquadrina pachyderma from Pliocene and early Pleistocene sediments at both DSDP site 173 and the Centerville Beach section in California suggests a large influx of isotopically light water in this area during late Pliocene and early Pleistocene time. Salinity may have been reduced by as much as 2 to 4 ?. Surface sea water paleotemperatures for the lower Pliocene range from 9.5°C to 15.5°C. The oxygen isotope record of the benthonic genus Uvigerina shows little variation indicating environmental stability at depth. At DSDP site 173 the small variation in Uvigerina is due to variation in the oxygen isotopic composition of the oceans as glaciers waxed and waned. At the Centerville Beach section the oxygen isotopic composition of Uvigerina reflects the gradual shoaling of the Humboldt Basin. Carbon and oxygen isotope ratios in G. bulloides and N. pachyderma are inversely correlated at the 95% confidence level. This may indicate that the oxygen and carbon isotopic composition of foraminifera are influenced by the same factors. On the other hand, the inverse correlation may be due to metabolic fractionation. No correlation was found between oxygen and carbon isotopic composition in Uvigerina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated five time-equivalent core sections (180-110 kyr BP) from the Balearic Sea (Menorca Rise), the easternmost Levantine Basin and southwest, south, and southeast of Crete to reconstruct spatial patterns of productivity during deposition of sapropels S5 and S6 in the Mediterranean Sea. Our indicators are Ba, total organic carbon and carbonate contents. We found no indications of Ba remobilization within the investigated core intervals, and used the accumulation rate of biogenic Ba to compute paleoproductivity. Maximum surface water productivity (up to 350 g C/m2/yr) was found during deposition of S5 (isotope stage 5e) but pronounced spatial variability is evident. Coeval sediment intervals in the Balearic Sea show very little productivity change, suggesting that chemical and biological environments in the eastern and western Mediterranean basins were decoupled in this interval. We interpret the spatial variability as the result of two different modes of nutrient delivery to the photic zone: riverderived nutrient input and shoaling of the pycnocline/nutricline to the photic zone. The productivity increase during the formation of S6 was moderate compared to S5 and had a less marked spatial variability within the study area of the eastern Mediterranean Sea. Given that S6 formed during a glacial interval, glacial boundary conditions such as high wind stress and/or cooler surface water temperatures apparently favored lateral and vertical mixing and prevented the development of the spatial gradients within the Eastern Mediterranean Sea (EMS) observed for S5. A non-sapropel sediment interval with elevated Ba content and depleted 18O/16O ratios in planktonic foraminifer calcite was detected between S6 and S5 that corresponds to the weak northern hemisphere insolation maximum at 150 kyr. At this time, productivity apparently increased up to five times over surrounding intervals, but abundant benthic fauna show that the deep water remained oxic. Following our interpretation, the interval denotes a failed sapropel, when a weaker monsoon did not force the EMS into permanent stratification. The comparison of interglacial and glacial sapropels illustrates the relevance of climatic boundary conditions in the northern catchment in determining the facies and spatial variability of sapropels within the EMS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate aragonitic skeletons of the Caribbean sclerosponge Ceratoporella nicholsoni from Jamaica, 20 m below sea level (mbsl), and Pedro Bank, 125 mbsl. We use d18O and Sr/Ca ratios as temperature proxies to reconstruct the Caribbean mixed layer and thermocline temperature history since 1400 A.D. with a decadal time resolution. Our age models are based on U/Th dating and locating of the radiocarbon bomb spike. The modern temperature difference between the two sites is used to tentatively calibrate the C. nicholsoni Sr/Ca thermometer. The resulting calibration points to a temperature sensitivity of Sr/Ca in C. nicholsoni aragonite of about -0.1 mmol/mol/K. Our Sr/Ca records reveal a pronounced warming from the early 19th to the late 20th century, both at 20 and 125 mbsl. Two temperature minima in the shallow water record during the late 17th and early 19th century correspond to the Maunder and Dalton sunspot minima, respectively. Another major cooling occurred in the late 16th century and is not correlatable with a sunspot minimum. The temperature contrast between the two sites decreased from the 14th century to a minimum in the late 17th century and subsequently increased to modern values in the early 19th century. This is interpreted as a long-term deepening and subsequent shoaling of the Caribbean thermocline. The major trends of the Sr/Ca records are reproduced in both specimens but hardly reflected in the d18O records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study tests the hypothesis that the late Miocene to early Pliocene constriction and closure of the Central American Seaway (CAS), connecting the tropical Atlantic and East quatorial Pacific (EEP), caused a decrease in productivity in the Caribbean, due to decreased coastal upwelling and an end to the connection with high-productivity tropical Pacific waters. The present study compared paleoceanographic proxies for the interval between 8.3 and 2.5 Ma in 47 samples from south Caribbean ODP Site 999 with published data on EEP DSDP Site 503. Proxies for Site 999 include the relative abundance of benthic foraminiferal species representing bottom current velocity and the flux of organic matter to the sea floor, the ratio of infaunal/epifaunal benthic foraminiferal species and benthic foraminifer accumulation rates (BFARs). In addition, we calculated % resistant planktic foraminifers species and used the previously published % sand fraction and benthic carbon isotope values from Site 999. During early shoaling of the Isthmus (8.3-7.9 Ma) the Caribbean was under mesotrophic conditions, with little ventilation of bottom waters and low current velocity. The pre-closure interval (7.6-4.2 Ma) saw enhanced seasonal input of phytodetritus with even more reduced ventilation, and enhanced dissolution between 6.8 and 4.8 Ma. During the post-closure interval (4.2-2.5 Ma) in the Caribbean, paleoproductivity decreased, current velocity was reduced, and ventilation improved, while the seasonality of phytodetrital input was reduced dramatically, coinciding with the establishment of the Atlantic-Pacific salinity contrast at 4.2 Ma. Our data support the hypothesis that late Miocene constriction of the CAS at 7.9 Ma and its closure at 4.2 Ma caused a gradual decrease in paleoproductivity in the Caribbean, consistent with decreased current velocity and seasonality of the phytodetrital input.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global change leads to a multitude of simultaneous modifications in the marine realm among which shoaling of the upper mixed layer, leading to enhanced surface layer light intensities, as well as increased carbon dioxide (CO2) concentration are some of the most critical environmental alterations for phytoplankton. In this study, we investigated the responses of growth, photosynthetic carbon fixation and calcification of the coccolithophore Gephyrocapsa oceanica to elevated inline image (51 Pa, 105 Pa, and 152 Pa) (1 Pa ~ 10 µatm) at a variety of light intensities (50-800 µmol photons/m**2/s). By fitting the light response curve, our results showed that rising inline image reduced the maximum rates for growth, photosynthetic carbon fixation and calcification. Increasing light intensity enhanced the sensitivity of these rate responses to inline image, and shifted the inline image optima toward lower levels. Combining the results of this and a previous study (Sett et al. 2014) on the same strain indicates that both limiting low inline image and inhibiting high inline image levels (this study) induce similar responses, reducing growth, carbon fixation and calcification rates of G. oceanica. At limiting low light intensities the inline image optima for maximum growth, carbon fixation and calcification are shifted toward higher levels. Interacting effects of simultaneously occurring environmental changes, such as increasing light intensity and ocean acidification, need to be considered when trying to assess metabolic rates of marine phytoplankton under future ocean scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concentrations of rare earth elements (REEs) in seawater display systematic variations related to weathering inputs, particle scavenging and water mass histories. Here we investigate the REE concentrations of water column profiles in the Atlantic sector of the Southern Ocean, a key region of the global circulation and primary production. The data reveal a pronounced contrast between the vertical profiles in the Antarctic Circumpolar Current (ACC) and those to the south of the ACC in the Weddell Gyre (WG). The ACC profiles exhibit the typical increase of REE concentrations with water depth and a change in the shape of the profiles from near linear for the light REEs to more convex for the heavy REEs. In contrast, the WG profiles exhibit high REE concentrations throughout the water column with only the near surface samples showing slightly reduced concentrations indicative of particle scavenging. Seawater normalised REE patterns reveal the strong remineralisation signal in the ACC with the light REEs preferentially removed in surface waters and the mirror image pattern of their preferential release in deep waters. In the WG the patterns are relatively homogenous reflecting the prevalence of well-mixed Lower Circumpolar Deep Water (LCDW) that follows shoaling isopycnals in the region. In the WG particle scavenging of REEs is comparatively small and limited to the summer months by light limitation and winter sea ice cover. Considering the surface water depletion compared to LCDW and that the surface waters of the WG are replaced every few years, the removal rate is estimated to be on the order of 1 nmol/m3/yr for La and Nd. The negative cerium anomalies observed in deep waters are some of the strongest found globally with only the deepest waters in parts of the Pacific having stronger anomalies. These deep waters have been isolated from fresh continental REE inputs during their long journey through the abyssal Indo-Pacific ocean and suggests that the high REE concentrations found in the ACC and WG reflect contributions from old deep waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 µatm, minimum Omega (arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 µatm, minimum Omega (arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 µatm, minimum Omega (arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments.