979 resultados para sex steroid receptors
Resumo:
OBJECTIVES Patients with inflammatory bowel disease (IBD) have a high resource consumption, with considerable costs for the healthcare system. In a system with sparse resources, treatment is influenced not only by clinical judgement but also by resource consumption. We aimed to determine the resource consumption of IBD patients and to identify its significant predictors. MATERIALS AND METHODS Data from the prospective Swiss Inflammatory Bowel Disease Cohort Study were analysed for the resource consumption endpoints hospitalization and outpatient consultations at enrolment [1187 patients; 41.1% ulcerative colitis (UC), 58.9% Crohn's disease (CD)] and at 1-year follow-up (794 patients). Predictors of interest were chosen through an expert panel and a review of the relevant literature. Logistic regressions were used for binary endpoints, and negative binomial regressions and zero-inflated Poisson regressions were used for count data. RESULTS For CD, fistula, use of biologics and disease activity were significant predictors for hospitalization days (all P-values <0.001); age, sex, steroid therapy and biologics were significant predictors for the number of outpatient visits (P=0.0368, 0.023, 0.0002, 0.0003, respectively). For UC, biologics, C-reactive protein, smoke quitters, age and sex were significantly predictive for hospitalization days (P=0.0167, 0.0003, 0.0003, 0.0076 and 0.0175 respectively); disease activity and immunosuppressive therapy predicted the number of outpatient visits (P=0.0009 and 0.0017, respectively). The results of multivariate regressions are shown in detail. CONCLUSION Several highly significant clinical predictors for resource consumption in IBD were identified that might be considered in medical decision-making. In terms of resource consumption and its predictors, CD and UC show a different behaviour.
Resumo:
Defects of androgen biosynthesis cause 46,XY disorder of sexual development (DSD). All steroids are produced from cholesterol and the early steps of steroidogenesis are common to mineralocorticoid, glucocorticoid and sex steroid production. Genetic mutations in enzymes and proteins supporting the early biosynthesis pathways cause adrenal insufficiency (AI), DSD and gonadal insufficiency. The classic androgen biosynthesis defects with AI are lipoid CAH, CYP11A1 and HSD3B2 deficiencies. Deficiency of CYP17A1 rarely causes AI, and HSD17B3 or SRD5A2 deficiencies only cause 46,XY DSD and gonadal insufficiency. All androgen biosynthesis depends on 17,20 lyase activity of CYP17A1 which is supported by P450 oxidoreductase (POR) and cytochrome b5 (CYB5). Therefore 46,XY DSD with apparent 17,20 lyase deficiency may be due to mutations in CYP17A1, POR or CYB5. Illustrated by patients harboring mutations in SRD5A2, normal development of the male external genitalia depends largely on dihydrotestosterone (DHT) which is converted from circulating testicular testosterone (T) through SRD5A2 in the genital skin. In the classic androgen biosynthetic pathway, T is produced from DHEA and androstenedione/-diol in the testis. However, recently found mutations in AKR1C2/4 genes in undervirilized 46,XY individuals have established a role for a novel, alternative, backdoor pathway for fetal testicular DHT synthesis. In this pathway, which has been first elucidated for the tammar wallaby pouch young, 17-hydroxyprogesterone is converted directly to DHT by 5α-3α reductive steps without going through the androgens of the classic pathway. Enzymes AKR1C2/4 catalyse the critical 3αHSD reductive reaction which feeds 17OH-DHP into the backdoor pathway. In conclusion, androgen production in the fetal testis seems to utilize two pathways but their exact interplay remains to be elucidated.
Resumo:
CONTEXT 3β-hydroxysteroid dehydrogenase deficiency (3βHSD) is a rare disorder of sexual development and steroidogenesis. There are two isozymes of 3βHSD, HSD3B1 and HSD3B2. Human mutations are known for the HSD3B2 gene which is expressed in the gonads and the adrenals. Little is known about testis histology, fertility and malignancy risk. OBJECTIVE To describe the molecular genetics, the steroid biochemistry, the (immuno-)histochemistry and the clinical implications of a loss-of-function HSD3B2 mutation. METHODS Biochemical, genetic and immunohistochemical investigations on human biomaterials. RESULTS A 46,XY boy presented at birth with severe undervirilization of the external genitalia. Steroid profiling showed low steroid production for mineralocorticoids, glucocorticoids and sex steroids with typical precursor metabolites for HSD3B2 deficiency. The genetic analysis of the HSD3B2 gene revealed a homozygous c.687del27 deletion. At pubertal age, he showed some virilization of the external genitalia and some sex steroid metabolites appeared likely through conversion of precursors secreted by the testis and converted by unaffected HSD3B1 in peripheral tissues. However, he also developed enlarged breasts through production of estrogens in the periphery. Testis histology in late puberty revealed primarily a Sertoli-cell-only pattern and only few tubules with arrested spermatogenesis, presence of few Leydig cells in stroma, but no neoplastic changes. CONCLUSIONS The testis with HSD3B2 deficiency due to the c.687del27 deletion does not express the defective protein. This patient is unlikely to be fertile and his risk for gonadal malignancy is low. Further studies are needed to obtain firm knowledge on malignancy risk for gonads harboring defects of androgen biosynthesis.
Resumo:
PROBLEM Given the important role of regulatory T cells (Treg) for successful pregnancy, the ability of soluble maternal and fetal pregnancy factors to induce human Treg was investigated. METHOD OF STUDY Peripheral blood mononuclear cells (PBMCs) or isolated CD4+CD25‒ cells were cultured in the presence of pooled second or third trimester pregnancy sera, steroid hormones or supernatants from placental explants, and the numbers and function of induced CD4+CD25+FOXP3+ Treg were analysed. RESULTS Third trimester pregnancy sera and supernatants of early placental explants, but not sex steroid hormones, induced an increase of Tregs from PBMCs. Early placental supernatant containing high levels of tumour necrosis factor-α, interferon-γ, interleukins -1, -6 and -17, soluble human leucocyte antigen-G, and transforming growth factor-β1, increased the proportion of Treg most effectively and was able to induce interleukin-10-secreting-Treg from CD4+CD25‒cells. CONCLUSIONS Compared with circulating maternal factors, placental- and fetal-derived factors appear to exert a more powerful effect on numerical changes of Treg, thereby supporting fetomaternal tolerance during human pregnancy.
Resumo:
Introduction. Several studies have reported a positive association of body mass index (BMI) with multiple myeloma; however, the period of adulthood where BMI is most important remains unclear. In addition, it is well known that body fat is associated with both sex-steroid hormone storage and with increasing insulin levels; therefore, it was hypothesized that the association between obesity and multiple myeloma may be attributed to increased aromatization of androgen in adipose tissue. Objective. The overall objective of this case-control study was to determine whether multiple myeloma cases had higher BMI and greater adult weight gain relative to healthy controls. In addition, we tested the hypothesis that hormone replacement therapy use among women will further increase the association between BMI and risk of multiple myeloma. This study used data from a pilot case-control study at M.D. Anderson Cancer Center (MDACC), entitled Etiology of multiple myeloma, directed by Dr. Sara Strom and Dr. Sergio Giralt. Methods. The pilot study recruited a total of 122 cases of histopathologically confirmed multiple myeloma from MDACC. Controls (n=183) were selected from a database of random digit dialing controls accrued in the Department of Epidemiology at MDACC and were frequency matched to the cases on age (±5 years), gender, and race/ethnicity. Demographic and risk factor information were obtained from all participants who completed a self-administered questionnaire. Items included in the questionnaire include demographic information, height and weight at age 25, 40 and current/diagnosis, medical history, family history of cancer, smoking and alcohol use. Statistical analysis. Initial descriptive analysis included Student's t-test and Pearson's chi-squared tests. Odds ratios and 95% confidence intervals were calculated to quantify the association between the variables of interest and multiple myeloma. A multivariable model will be developed using unconditional logistic regression. Results. MM cases were 1.79 times (95% CI=0.99-3.32) more likely to have been overweight or obese (BMI > 25 kg/m2) at age 25 relative to healthy controls after controlling for age, gender, race/ethnicty, education and family history of cancer. Being overweight or obese at age 40 was not significantly associated with mutliple myeloma risk (OR=1.42, 95% CI=0.86-2.34) nor was being overweight or obses at diagnosis (OR=1.43, 95% CI=0.78, 2.63). We observed a statistically significant 2-fold increased odds of multiple myeloma in individuals who gained more than 4.7 kg during between 25 and 40 years (OR=1.97, 95% CI=1.15-3.39). When assessing HRT as a modifier of the BMI and multiple myeloma association among women (N=123), no association between obesity and MM status was observed among women who have never used HRT (OR=0.60, 95% CI=0.23-1.61; n=73). Yet among women who have ever used HRT (n=50), being overweight or obese was associated with an increase in MM risk (OR=2. 93, 95% CI=0.81-10.6) after adjusting for age; however, the association was not statistically significant. Significance. This study provides further evidence that increased BMI increases the risk of multiple myeloma. Furthermore, among women, HRT use may modify risk of disease. ^
Resumo:
In the cycling human endometrium, the expression of interstitial collagenase (MMP-1) and of several related matrix metalloproteinases (MMPs) follows the late-secretory fall in sex steroid plasma concentrations and is thought to be a critical step leading to menstruation. The rapid and extensive lysis of interstitial matrix that precedes menstrual shedding requires a strict control of these proteinases. However, the mechanism by which ovarian steroids regulate endometrial MMPs remains unclear. We report here that, in the absence of ovarian steroids, MMP-1 expression in endometrial fibroblasts is markedly stimulated by medium conditioned by endometrial epithelial cells. This stimulation can be prevented by antibodies directed against interleukin 1α (IL-1α) but not against several other cytokines. Ovarian steroids inhibit the release of IL-1α and repress MMP-1 production by IL-1α-stimulated fibroblasts. In short-term cultures of endometrial explants obtained throughout the menstrual cycle, the release of both IL-1α and MMP-1 is essentially limited to the perimenstrual phase. We conclude that epithelium-derived IL-1α is the key paracrine inducer of MMP-1 in endometrial fibroblasts. However, MMP-1 production in the human endometrium is ultimately blocked by ovarian steroids, which act both upstream and downstream of IL-1α, thereby exerting an effective control via a “double-block” mechanism.
Resumo:
Estrogens are thought to regulate female reproductive functions by altering gene transcription in target organs primarily via the nuclear estrogen receptor-α (ER-α). By using ER-α “knock-out” (ERKO) mice, we demonstrate herein that a catecholestrogen, 4-hydroxyestradiol-17β (4-OH-E2), and an environmental estrogen, chlordecone (kepone), up-regulate the uterine expression of an estrogen-responsive gene, lactoferrin (LF), independent of ER-α. A primary estrogen, estradiol-17β (E2), did not induce this LF response. An estrogen receptor antagonist, ICI-182,780, or E2 failed to inhibit uterine LF gene expression induced by 4-OH-E2 or kepone in ERKO mice, which suggests that this estrogen signaling pathway is independent of both ER-α and the recently cloned ER-β. 4-OH-E2, but not E2, also stimulated increases in uterine water imbibition and macromolecule uptake in ovariectomized ERKO mice. The results strongly imply the presence of a distinct estrogen-signaling pathway in the mouse uterus that mediates the effects of both physiological and environmental estrogens. This estrogen response pathway will have profound implications for our understanding of the physiology and pathophysiology of female sex steroid hormone actions in target organs.
Resumo:
FKBP52 (HSP56, p59, HBI) is the 59-kDa immunosuppressant FK506-binding protein and has peptidyl prolyl isomerase as well as a chaperone-like activity in vitro. FKBP52 associates with the heat shock protein HSP90 and is included in the steroid hormone receptor complexes in vivo. FKBP52 possesses a well conserved phosphorylation site for casein kinase II (CK2) that was previously shown to be associated with HSP90. Here we examined whether FKBP52 is phosphorylated by CK2 both in vivo and in vitro. Recombinant rabbit FKBP52 was phosphorylated by purified CK2. We expressed and purified deletion mutants of FKBP52 to determine the site(s) phosphorylated by CK2. Thr-143 in the hinge I region was identified as the major phosphorylation site for CK2. A synthetic peptide corresponding to this region was phosphorylated by CK2, and the peptide competitively inhibited the phosphorylation of other substrates by CK2. The [32P]phosphate labeling of FKBP52-expressing cells revealed that the same site is also phosphorylated in vivo. FK506 binding to FKBP52 did not affect the phosphorylation by CK2 and, conversely, the FK506-binding activity of FKBP52 was not affected by the phosphorylation. Most importantly, CK2-phosphorylated FKBP52 did not bind to HSP90. These results indicate that CK2 phosphorylates FKBP52 both in vitro and in vivo and thus may regulate the protein composition of chaperone-containing complexes such as those of steroid receptors and certain protein kinases.
Ras Pathway Activates Epithelial Na+ Channel and Decreases Its Surface Expression in Xenopus Oocytes
Resumo:
The small G protein K-Ras2A is rapidly induced by aldosterone in A6 epithelia. In these Xenopus sodium reabsorbing cells, aldosterone rapidly activates preexisting epithelial Na+ channels (XENaC) via a transcriptionally mediated mechanism. In the Xenopus oocytes expression system, we tested whether the K-Ras2A pathway impacts on XENaC activity by expressing XENaC alone or together with XK-Ras2A rendered constitutively active (XK-Ras2AG12V). As a second control, XENaC-expressing oocytes were treated with progesterone, a sex steroid that induces maturation of the oocytes similarly to activated Ras. Progesterone or XK-Ras2AG12V led to oocyte maturation characterized by a decrease in surface area and endogenous Na+ pump function. In both conditions, the surface expression of exogenous XENaC′s was also decreased; however, in comparison with progesterone-treated oocytes, XK-ras2AG12V-coinjected oocytes expressed a fivefold higher XENaC-mediated macroscopic Na+ current that was as high as that of control oocytes. Thus, the Na+ current per surface-expressed XENaC was increased by XK-Ras2AG12V. The chemical driving force for Na+ influx was not changed, suggesting that XK-Ras2AG12V increased the mean activity of XENaCs at the oocyte surface. These observations raise the possibility that XK-Ras2A, which is the first regulatory protein known to be transcriptionally induced by aldosterone, could play a role in the control of XENaC function in aldosterone target cells.
Resumo:
The mechanisms underlying the menstrual lysis leading to shedding of the human endometrium and its accompanying bleeding are still largely unknown. In particular, whether breakdown of the endometrial fibrillar extra-cellular matrix that precedes bleeding depends on aspartic-, cysteine-, serine-, or metalloproteinases remains unclear. In the present study, menstrual regression of the human endometrium was mimicked in organ culture. Whereas sex steroids could preserve tissue integrity only in nonperimenstrual explants, matrix breakdown upon sex steroid deprivation was completely and reversibly inhibited at all stages of the menstrual cycle by specific inhibitors of matrix metalloproteinases, but not by inhibitors of the other classes of proteinases. Matrix metalloproteinases are thus identified as the key class of proteinases involved in the initiation of menstruation.
Resumo:
The androgen receptor (AR) is a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. Mutations or abnormal expression of AR in prostate cancer can play a key role in the process that changes prostate cancer from androgen-dependent to an androgen-independent stage. Using a yeast two-hybrid system, we were able to isolate a ligand-dependent AR-associated protein (ARA70), which functions as an activator to enhance AR transcriptional activity 10-fold in the presence of 10(-10) M dihydrotestosterone or 10(-9) M testosterone, but not 10(-6) M hydroxyflutamide in human prostate cancer DU145 cells. Our data further indicated that ARA70 Will only slightly induce the transcriptional activity of other steroid receptors such as estrogen receptor, glucocorticoid receptor, and progesterone receptor in DU145 cells. Together, these data suggest that AR may need a specific coactivator(s) such as ARA70 for optimal androgen activity.
Resumo:
La ricerca di nuove strategie per la rigenerazione ossea rappresenta un focus di interesse centrale per migliorare la gestione di casi clinici complessi nell’ambito della chirurgia orale e maxillo-facciale. Uno degli approcci più utilizzati in tale contesto si basa sull’utilizzo di molecole con proprietà osteoinduttive e molte sostanze sono state fino ad oggi sperimentate. E’ noto in letteratura che gli androgeni svolgono un ruolo chiave nella regolazione della morfogenesi ossea e nel mantenimento della sua omeostasi durante il corso della vita. Questo lavoro di tesi nasce dall’ipotesi che la somministrazione locale di tali ormoni, eventualmente combinata a materiali da innesto, possa favorire la guarigione di difetti ossei. Stando a questa premessa, sono stati valutati gli effetti dello steroide sintetico Stanozololo sulla rigenerazione ossea in diversi settings sperimentali. La tesi è strutturata secondo un percorso che segue le fasi della ricerca, attraverso sperimentazioni in vitro e in vivo; ogni capitolo può essere approcciato come uno studio a sé stante, corrispondente ad una determinata tappa dell’iter sperimentale. Sulla base di questi intenti, viene fornito inizialmente un quadro d’insieme circa gli effetti degli androgeni sull’osso. A seguire, è presentata una sperimentazione in vitro nella linea cellulare SaOS-2. Infine, è proposta un’innovativa metodologia di analisi per lo studio della rigenerazione ossea nel modello di ratto, ove viene testata la somministrazione locale di Stanozololo combinato a materiale da innesto.
Resumo:
The high-affinity ligand-binding form of unactivated steroid receptors exists as a multicomponent complex that includes heat shock protein (Hsp)90; one of the immunophilins cyclophilin 40 (CyP40), FKBP51, or FKBP52; and an additional p23 protein component. Assembly of this heterocomplex is mediated by Hsp70 in association with accessory chaperones Hsp40, Hip, and Hop. A conserved structural element incorporating a tetratricopeptide repeat (TPR) domain mediates the interaction of the immunophilins with Hsp90 by accommodating the C-terminal EEVD peptide of the chaperone through a network of electrostatic and hydrophobic interactions. TPR cochaperones recognize the EEVD structural motif common to both Hsp90 and Hsp70 through a highly conserved clamp domain. In the present study, we investigated in vitro the molecular interactions between CyP40 and FKBP52 and other stress-related components involved in steroid receptor assembly, namely Hsp70 and Hop. Using a binding protein-retention assay with CyP40 fused to glutathione S-transferase immobilized on glutathione-agarose, we have identified the constitutively expressed form of Hsp70, heat shock cognate (Hsc)70, as an additional target for CyP40. Deletion mapping studies showed the binding determinants to be similar to those for CyP40-Hsp90 interaction. Furthermore, a mutational analysis of CyP40 clamp domain residues confirmed the importance of this motif in CyP40-Hsc70 interaction. Additional residues thought to mediate binding specificity through hydrophobic interactions were also important for Hsc70 recognition. CyP40 was shown to have a preference for Hsp90 over Hsc70. Surprisingly, FKBP52 was unable to compete with CyP40 for Hsc70 binding, suggesting that FKBP52 discriminates between the TPR cochaperone-binding sites in Hsp90 and Hsp70. Hop, which contains multiple units of the TPR motif, was shown to be a direct competitor with CyP40 for Hsc70 binding. Similar to Hop, CyP40 was shown not to influence the adenosine triphosphatase activity of Hsc70. Our results suggest that CyP40 may have a modulating role in Hsc70 as well as Hsp90 cellular function.
Resumo:
Dehydroepiandrosterone sulfate (DHEAS) is the most abundant steroid in the human circulation and is secreted by the adrenals in an age-dependent fashion, with maximum levels during the third decade and very low levels in old age. DHEAS is considered an inactive metabolite, whereas cleavage of the sulfate group generates dehydroepiandrosterone (DHEA), a crucial sex steroid precursor. However, here we show that DHEAS, but not DHEA, increases superoxide generation in primed human neutrophils in a dose-dependent fashion, thereby impacting on a key bactericidal mechanism. This effect was not prevented by coincubation with androgen and estrogen receptor antagonists but was reversed by the protein kinase C inhibitor Bisindolylmaleimide 1. Moreover, we found that neutrophils are unique among leukocytes in expressing an organic anion-transporting polypeptide D, able to mediate active DHEAS influx transport whereas they did not express steroid sulfatase that activates DHEAS to DHEA. A specific receptor for DHEAS has not yet been identified, but we show that DHEAS directly activated recombinant protein kinase C-ß (PKC-ß) in a cell-free assay. Enhanced PKC-ß activation by DHEAS resulted in increased phosphorylation of p47phox, a crucial component of the active reduced nicotinamide adenine dinucleotide phosphate complex responsible for neutrophil superoxide generation. Our results demonstrate that PKC-ß acts as an intracellular receptor for DHEAS in human neutrophils, a signaling mechanism entirely distinct from the role of DHEA as sex steroid precursor and with important implications for immunesenescence, which includes reduced neutrophil superoxide generation in response to pathogens.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)