848 resultados para serrated aperture
Resumo:
The new rigorous numerical-analytical technique based upon Galerkin method with the entire domain basis functions has been developed and applied to the study of the periodic aperture arrays containing multiple dissimilar apertures of complex shapes in stratified medium. The rapid uniform convergence of the solutions has enabled a comprehensive parametric study of complex array arrangements. The developed theory has revealed new effects of the aperture shape and layout on the array performance. The physical mechanisms underlying the TM wave resonances and Luebbers' anomaly have been explained for the first time.
Resumo:
The problem of diffraction of an optical wave by a 2D periodic metal aperture array with square, circular, and ring apertures is solved with allowance for the finite permittivity of a metal in the optical band. The correctness of the obtained results is verified through comparison with experimental data. It is shown that the transmission coefficient can be substantially greater than the corresponding value reached in the case of diffraction by a grating in a perfectly conducting screen.
Resumo:
Presented is a design methodology which permits the application of distributed coupled resonator bandpass filter principles to form wideband small-aperture evanescent-mode waveguide antenna designs. This approach permits matching of the complex antenna aperture admittance of an evanescent-mode open-ended waveguide to a real impedance generator, and thereby to a coaxial feed probe. A simulated reflection coefficient of < - 10 dB was obtained over a bandwidth of 20%, from 2.0-2.45 GHz, in a 2.58 GHz cutoff waveguide. Dielectric-filled propagating waveguide and air-filled evanescent-mode waveguide sections are used to form the resonators/coupling elements of the antenna's coupled resonator matching sections. Simulated realised gain variation from 3.4-5.0 dBi is observed across the bandwidth. The antenna's maximum aperture dimension is < 0.47 wavelength at the upper operating frequency and so it is suitable for use in a wide angle scanning phased array.
Resumo:
The collective response of charged particles to intense fields is intrinsic to plasma accelerators and radiation sources, relativistic optics and many astrophysical phenomena. Here we show that a relativistic plasma aperture is generated in thin foils by intense laser light, resulting in the fundamental optical process of diffraction. The plasma electrons collectively respond to the resulting laser near-field diffraction pattern, producing a beam of energetic electrons with a spatial structure that can be controlled by variation of the laser pulse parameters. It is shown that static electron-beam and induced-magnetic-field structures can be made to rotate at fixed or variable angular frequencies depending on the degree of ellipticity in the laser polarization. The concept is demonstrated numerically and verified experimentally, and is an important step towards optical control of charged particle dynamics in laser-driven dense plasma sources.