929 resultados para serine proteinase inhibitor
Resumo:
The purpose of this work was to purify a protease from Penicillium waksmanii and to determine its biochemical characteristics and specificity. The extracellular protease isolated that was produced by P. waksmanii is a serine protease that is essential for the reproduction and growth of the fungus. The protease isolated showed 32 kDa, and has optimal activity at pH 8.0 and 35 C towards the substrate Abz-KLRSSKQ-EDDnp. The protease is active in the presence of CaCl2, KCl, and BaCl, and partially inhibited by CuCl2, CoCl2 and totally inhibited by AlCl3 and LiCl. In the presence of 1 M urea, the protease remains 50 % active. The activity of the protease increases 60 % when it is exposed to 0.4 % nonionic surfactant-Triton X-100 and loses 10 % activity in the presence of 0.4 % Tween-80. Using fluorescence resonance energy transfer analysis, the protease showed the most specificity for the peptide Abz-KIRSSKQ-EDDnp with k cat/K m of 10,666 mM-1 s-1, followed by the peptide Abz-GLRSSKQ-EDDnp with a k cat/K m of 7,500 mM -1 s-1. Basic and acidic side chain-containing amino acids performed best at subsite S1. Subsites S2, S3, S′ 2, and S′ 1, S ′ 3 showed a preference for binding for amino acids with hydrophobic and basic amino acid side chain, respectively. High values of k cat/K m were observed for the subsites S2, S3, and S′ 2. The sequence of the N-terminus (ANVVQSNVPSWGLARLSSKKTGTTDYTYD) showed high similarity to the fungi Penicillium citrinum and Penicillium chrysogenum, with 89 % of identity at the amino acid level. © 2012 Springer Science+Business Media New York.
Resumo:
The cysteine proteinase inhibitor cystatin C inhibited RANKL-stimulated osteoclast formation in mouse bone marrow macrophage cultures, an effect associated with decreased mRNA expression of Acp5, Calcr, Ctsk, Mmp9, Itgb3, and Atp6i, without effect on proliferation or apoptosis. The effects were concentration dependent with half-maximal inhibition at 0.3 μM. Cystatin C also inhibited osteoclast formation when RANKL-stimulated osteoclasts were cultured on bone, leading to decreased formation of resorption pits. RANKL-stimulated cells retained characteristics of phagocytotic macrophages when cotreated with cystatin C. Three other cysteine proteinase inhibitors, cystatin D, Z-RLVG-CHN2 (IC50 0.1 μM), and E-64 (IC 50 3 μM), also inhibited osteoclast formation in RANKL-stimulated macrophages. In addition, cystatin C, Z-RLVG-CHN2, and E-64 inhibited osteoclastic differentiation of RANKL-stimulated CD14+ human monocytes. The effect by cystatin C on differentiation of bone marrow macrophages was exerted at an early stage after RANKL stimulation and was associated with early (4 h) inhibition of c-Fos expression and decreased protein and nuclear translocation of c-Fos. Subsequently, p52, p65, IκBα, and Nfatc1 mRNA were decreased. Cystatin C was internalized in osteoclast progenitors, a process requiring RANKL stimulation. These data show that cystatin C inhibits osteoclast differentiation and formation by interfering intracellularly with signaling pathways downstream RANK. © FASEB.
Resumo:
Streblin, a serine proteinase from plant Streblus asper, has been used to investigate the conformational changes induced by pH, temperature, and chaotropes. The near/far UV circular dichroism activities under fluorescence emission spectroscopy and 8-aniline-1-naphthalene sulfonate (ANS) binding have been carried out to understand the unfolding of the protein in the presence of denaturants. Spectroscopic studies reveal that streblin belongs to the alpha+beta class of proteins and exhibits stability towards chemical denaturants, guanidine hydrochloride (GuHCl). The pH-induced transition of this protein is noncooperative for transition phases between pH 0.5 and 2.5 (midpoint, 1.5) and pH 2.5 and 10.0 (midpoint, 6.5). At pH 1.0 or lower, the protein unfolds to form acid-unfolded state, and for pH 7.5 and above, protein turns into an alkaline denatured state characterized by the absence of ANS binding. At pH 2.0 (1M GuHCl), streblin exists in a partially unfolded state with characteristics of amolten globule state. The protein is found to exhibit strong and predominant ANS binding. In total, six different intermediate states has been identified to show protein folding pathways.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have characterized in vitro and in vivo effects of trypsin inhibitors from Theobroma seeds on the activity of trypsin- and chymotrypsin-like proteins from Lepidopteran pest insects. The action of semipurified trypsin inhibitors from Theobroma was evaluated by the inhibition of bovine trypsin and chymotrypsin activities determined by the hydrolysis of N-Benzoyl-DL-Arginine-p-Nitroanilide (BAPA) and N-Succinyl-Ala-Ala-Pho-Phe p-Nitroanilide (S-(Ala)2ProPhe-pNA). Proteinase inhibitor activities from Theobroma cacao and T. obovatum seeds were the most effective in inhibiting trypsin-like proteins, whereas those from T. obovatum and T. sylvestre were the most efficient against chymotrypsin-like proteins. All larvae midgut extracts showed trypsin-like proteolytic activities, and the putative trypsin inhibitors from Theobroma seeds significantly inhibited purified bovine trypsin. With respect to the influence of Theobroma trypsin inhibitors on intact insects, the inclusion of T. cacao extracts in artificial diets of velvet bean caterpillars (Anticarsia gemmatalis) and sugarcane borer (Diatraea saccharalis) produced a significant increase in the percentage of adult deformation, which is directly related to both the survival rate of the insects and oviposition.
Resumo:
Several proteins have been isolated from seeds of leguminous, but this is the first report that a protease was obtained from seeds of Caesalpinia echinata Lam., a tree belonging to the Fabaceae family. This enzyme was purified to homogeneity by hydrophobic interaction and anion exchange chromatographies and gel filtration. This 61-kDa serine protease (CeSP) hydrolyses H-D-prolyl-L-phenylalanyl-L-arginine-p-nitroanilide (K-m 55.7 mu M) in an optimum pH of 7.1, and this activity is effectively retained until 50 degrees C. CeSP remained stable in the presence of kosmotropic anions (PO43-, SO42-, and CH3COO-) or chaotropic cations (K+ and Na+). It is strongly inhibited by TLCK, a serine protease inhibitor, but not by E-64, EDTA or pepstatin A. The characteristics of the purified enzyme allowed us to classify it as a serine protease. The role of CeSP in the seeds cannot be assigned yet but is possible to infer that it is involved in the mobilization of seed storage proteins.
Resumo:
Native Inga laurina (Fabaceae) trypsin inhibitor (ILTI) was tested for anti-insect activity against Diatraea saccharalis and Heliothis virescens larvae. The addition of 0.1% ILTI to the diet of D. saccharalis did not alter larval survival but decreased larval weight by 51%. The H. virescens larvae that were fed a diet containing 0.5% ILTI showed an 84% decrease in weight. ILTI was not digested by the midgut proteinases of either species of larvae. The trypsin levels were reduced by 55.3% in the feces of D. saccharalis and increased by 24.1% in the feces of H. virescens. The trypsin activity in both species fed with ILTI was sensitive to the inhibitor, suggesting that no novel proteinase resistant to ILTI was induced. Additionally, ILTI exhibited inhibitory activity against the proteinases present in the larval midgut of different species of Lepidoptera. The organization of the ilti gene was elucidated by analyzing its corresponding genomic sequence. The recombinant ILTI protein (reILTI) was expressed and purified, and its efficacy was evaluated. Both native ILTI and reILTI exhibited a similar strong inhibitory effect on bovine trypsin activity. These results suggest that ILTI presents insecticidal properties against both insects and may thus be a useful tool in the genetic engineering of plants. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Das Low Density Lipoprotein Receptor-related Protein 1 (LRP1) scheint neben seiner ursprünglichen Rolle als Lipoproteinrezeptor auch eine fundamentale Rolle bei der Einleitung von Signaltransduktionskaskaden im sich entwickelnden Gehirn zu spielen. Einer seiner Hauptliganden ist die Serinprotease Tissue-type Plasminogen Aktivator (tPA), welche NMDA-Rezeptor-abhängig MAP Kinasenaktivierung induzieren kann. In dieser Studie sollte daher untersucht werden, ob LRP1 und der NMDA Rezeptor in der tPA-vermittelten Signaltransduktion miteinander kooperieren. Es konnte gezeigt werden, dass sowohl LRP1 als auch der NMDA Rezeptor an der tPA-induzierten Erk1/2 Phosphorylierung beteiligt sind, da dieser Effekt mit den spezifischen Inhibitoren RAP, MK-801 und DL-AP5 blockiert werden konnte. Eine weitere Bestätigung der LRP1-Spezifität zeigte sich durch shRNA knock-down Experimente. Calcium Imaging Experimente ergaben, dass die Applikation von tPA sowohl in primären, hippokampalen Neuronen als auch in der neuronalen Zelllinie HT22 zu einem robusten Einstrom von Calcium in die Zelle führte, welcher mit dem NMDA Rezeptor Inhibitor MK-801 und dem LRP1 Inhibitor RAP blockiert werden konnte. RNAi Experimente und Überexpressionsstudien bestätigten die Beteiligung von PSD-95 als intrazelluläres Adapterprotein, welches die beiden Rezeptoren miteinander verbindet. Als Bindungsstelle für PSD-95 konnte mit Hilfe von LRP1 knock-in Mausneuronen die distale NPxY(2) Domäne am LRP1 C-Terminus identifiziert werden. Diese Ergebnisse führten zu der Hypothese eines multimeren tPA-LRP1-NMDA Rezeptor Komplexes, der über die primäre Bindung von tPA an LRP1 aktiviert wird und anschließend das Signal an den NMDA Rezeptor weiterleitet. Somit weisen die Ergebnisse dieser Arbeit auf einen neuen, tPA-vermittelten Mechanismus zur Öffnung von Glutamatrezeptoren hin, der eine funktionelle Kooperation von dem Lipoproteinrezeptor LRP1 mit dem NMDA Rezeptor voraussetzt.
Resumo:
Activation of pro-phenol oxidase (proPO) in insects and crustaceans is important in defense against wounding and infection. The proPO zymogen is activated by a specific proteolytic cleavage. PO oxidizes phenolic compounds to produce quinones, which may help to kill pathogens and can also be used for synthesis of melanin to seal wounds and encapsulate parasites. We have isolated from the tobacco hornworm, Manduca sexta, a serine proteinase that activates proPO, and have cloned its cDNA. The isolated proPO activating proteinase (PAP) hydrolyzed artificial substrates but required other protein factors for proPO activation, suggesting that proPO-activating enzyme may exist as a protein complex, one component of which is PAP. PAP (44 kDa) is composed of two disulfide-linked polypeptide chains (31 kDa and 13 kDa). A cDNA for PAP was isolated from a hemocyte library, by using a PCR-generated probe based on the amino-terminal amino acid sequence of the 31-kDa catalytic domain. PAP belongs to a family of arthropod serine proteinases containing a carboxyl-terminal proteinase domain and an amino-terminal “clip” domain. The member of this family most similar in sequence to PAP is the product of the easter gene from Drosophila melanogaster. PAP mRNA was present at a low level in larval hemocytes and fat body, but became much more abundant in fat body after insects were injected with Escherichia coli. Sequence data and 3H-diisopropyl fluorphosphate labeling results suggest that the same PAP exists in hemolymph and cuticle.
Resumo:
Solar UV irradiation is the causal factor for the increasing incidence of human skin carcinomas. The activation of the transcription factor activator protein-1 (AP-1) has been shown to be responsible for the tumor promoter action of UV light in mammalian cells. We demonstrate that proteinase inhibitor I (Inh I) and II (Inh II) from potato tubers, when applied to mouse epidermal JB6 cells, block UV-induced AP-1 activation. The inhibition appears to be specific for UV-induced signal transduction for AP-1 activation, because these inhibitors did not block UV-induced p53 activation nor did they exhibit any significant influence on epidermal growth factor-induced AP-1 transactivation. Furthermore, the inhibition of UV-induced AP-1 activity occurs through a pathway that is independent of extracellular signal-regulated kinases and c-Jun N-terminal kinases as well as P38 kinases. Considering the important role of AP-1 in tumor promotion, it is possible that blocking UV-induced AP-1 activity by Inh I or Inh II may be functionally linked to irradiation-induced cell transformation.
Resumo:
The retinoids are reported to reduce incidence of second primary aerodigestive cancers. Mechanisms for this chemoprevention are previously linked to all-trans retinoic acid (RA) signaling growth inhibition at G1 in carcinogen-exposed immortalized human bronchial epithelial cells. This study investigated how RA suppresses human bronchial epithelial cell growth at the G1-S cell cycle transition. RA signaled growth suppression of human bronchial epithelial cells and a decline in cyclin D1 protein but not mRNA expression. Exogenous cyclin D1 protein also declined after RA treatment of transfected, immortalized human bronchial epithelial cells, suggesting that posttranslational mechanisms were active in this regulation of cyclin D1 expression. Findings were extended by showing treatment with ubiquitin-dependent proteasome inhibitors: calpain inhibitor I and lactacystin each prevented this decreased cyclin D1 protein expression, despite RA treatment. Treatment with the cysteine proteinase inhibitor, E-64, did not prevent this cyclin D1 decline. High molecular weight cyclin D1 protein species appeared after proteasome inhibitor treatments, suggesting that ubiquitinated species were present. To learn whether RA directly promoted degradation of cyclin D1 protein, studies using human bronchial epithelial cell protein extracts and in vitro-translated cyclin D1 were performed. In vitro-translated cyclin D1 degraded more rapidly when incubated with extracts from RA treated vs. untreated cells. Notably, this RA-signaled cyclin D1 proteolysis depended on the C-terminal PEST sequence, a region rich in proline (P), glutamate (E), serine (S), and threonine (T). Taken together, these data highlight RA-induced cyclin D1 proteolysis as a mechanism signaling growth inhibition at G1 active in the prevention of human bronchial epithelial cell transformation.
Resumo:
Two important cytokines mediating inflammation are tumor necrosis factor α (TNFα) and IL-1β, both of which require conversion to soluble forms by converting enzymes. The importance of TNFα-converting enzyme and IL-1β-converting enzyme in the production of circulating TNFα and IL-1β in response to systemic challenges has been demonstrated by the use of specific converting enzyme inhibitors. Many inflammatory responses, however, are not systemic but instead are localized. In these situations release and/or activation of cytokines may be different from that seen in response to a systemic stimulus, particularly because associations of various cell populations in these foci allows for the exposure of procytokines to the proteolytic enzymes produced by activated neutrophils, neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (Cat G). To investigate the possibility of alternative processing of TNFα and/or IL-1β by neutrophil-derived proteinases, immunoreactive TNFα and IL-1β release from lipopolysaccharide-stimulated THP-1 cells was measured in the presence of activated human neutrophils. Under these conditions, TNFα and IL-1β release was augmented 2- to 5-fold. In the presence of a specific inhibitor of NE and PR3, enhanced release of both cytokines was largely abolished; however, in the presence of a NE and Cat G selective inhibitor, secretory leucocyte proteinase inhibitor, reduction of the enhanced release was minimal. This finding suggested that the augmented release was attributable to PR3 but not NE nor Cat G. Use of purified enzymes confirmed this conclusion. These results indicate that there may be alternative pathways for the production of these two proinflammatory cytokines, particularly in the context of local inflammatory processes.
Resumo:
Proteinase inhibitor I (Inh I) and proteinase inhibitor II (Inh II) from potato tubers are effective proteinase inhibitors of chymotrypsin and trypsin. Inh I and Inh II were shown to suppress irradiation-induced transformation in mouse embryo fibroblasts suggesting that they possess anticarcinogenic characteristics. We have previously demonstrated that Inh I and Inh II could effectively block UV irradiation-induced activation of transcription activator protein 1 (AP-1) in mouse JB6 epidermal cells, which mechanistically may explain their anticarcinogenic actions. In the present study, we investigated the effects of Inh I and Inh II on the expression and composition pattern of the AP-1 complex following stimulation by UV B (UVB) irradiation in the JB6 model. We found that Inh I and Inh II specifically inhibited UVB-induced AP-1, but not NFκB, activity in JB6 cells. Both Inh I and Inh II up-regulated AP-1 constituent proteins, JunD and Fra-2, and suppressed c-Jun and c-Fos expression and composition in bound AP-1 in response to UVB stimulation. This regulation of the AP-1 protein compositional pattern in response to Inh I or Inh II may be critical for the inhibition of UVB-induced AP-1 activity by these agents found in potatoes.
Resumo:
Developing chickpea (Cicer arietinum L.) seeds 12 to 60 d after flowering (DAF) were analyzed for proteinase inhibitor (Pi) activity. In addition, the electrophoretic profiles of trypsin inhibitor (Ti) accumulation were determined using a gel-radiographic film-contact print method. There was a progressive increase in Pi activity throughout seed development, whereas the synthesis of other proteins was low from 12 to 36 DAF and increased from 36 to 60 DAF. Seven different Ti bands were present in seeds at 36 DAF, the time of maximum podborer (Helicoverpa armigera) attack. Chickpea Pis showed differential inhibitory activity against trypsin, chymotrypsin, H. armigera gut proteinases, and bacterial proteinase(s). In vitro proteolysis of chickpea Ti-1 with various proteinases generated Ti-5 as the major fragment, whereas Ti-6 and -7 were not produced. The amount of Pi activity increased severalfold when seeds were injured by H. armigera feeding. In vitro and in vivo proteolysis of the early- and late-stage-specific Tis indicated that the chickpea Pis were prone to proteolytic digestion by H. armigera gut proteinases. These data suggest that survival of H. armigera on chickpea may result from the production of inhibitor-insensitive proteinases and by secretion of proteinases that digest chickpea Pis.