996 resultados para semiconductors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article discusses the progress and issues related to transparent oxide semiconductor (TOS) TFTs for advanced display and imaging applications. Amorphous oxide semiconductors continue to spark new technological developments in transparent electronics on a multitude of non-conventional substrates. Applications range from high-frame-rate interactive displays with embedded imaging to flexible electronics, where speed and transparency are essential requirements. TOS TFTs exhibit high transparency as well as high electron mobility even when fabricated at room temperature. Compared to conventional a-Si TFT technology, TOS TFTs have higher mobility and sufficiently good uniformity over large areas, similar in many ways to LTPS TFTs. Moreover, because the amorphous oxide semiconductor has higher mobility compared to that of conventional a-Si TFT technology, this allows higher-frame-rate display operation. This would greatly benefit OLED displays in particular because of the need for lower-cost higher-mobility analog circuits at every subpixel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the development of amorphous oxide semiconductor technology for optical sensor applications. In particular, we discuss the challenges of detecting visible wavelengths using this family of materials, which are known to be optically transparent due to their relatively large bandgap energy. One of the main issues with amorphous oxide semiconductors (AOS) is the ionization of the oxygen vacancies (VO) under illumination. While this can be beneficial in terms of optical absorption and high photoconductive gain, it can give rise to persistent photoconductivity (PPC). We will present techniques to overcome the PPC, and discuss how to achieve the high photoconductive gain for image sensor applications. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of the negative bias illumination stress instability in InGaZn oxide is presented, based on the photo-excitation of electrons from oxygen interstitials. The O interstitials are present to compensate hydrogen donors. The O interstitials are found to spontaneously form in O-rich conditions for Fermi energies at the conduction band edge, much more easily that in related oxides. The excited electrons give rise to a persistent photoconductivity due to an energy barrier to recombination. The formation energy of the O interstitials varies with their separation from the H donors, which leads to a voltage stress dependence on the compensation. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We suggest a different practical scheme for the direct detection of pure spin current by using the two-color Faraday rotation of optical quantum interference process (QUIP) in a semiconductor system. We demonstrate theoretically that the Faraday rotation of QUIP depends sensitively on the spin orientation and wave vector of the carriers, and can be tuned by the relative phase and the polarization direction of the omega and 2 omega laser beams. By adjusting these parameters, the magnitude and direction of the spin current can be detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping. A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling, and calculated cooling efficiencies of different coupling mechanisms and of different lens materials. A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using an all-electron band structure approach, we have systematically calculated the natural band offsets between all group IV, III-V, and II-VI semiconductor compounds, taking into account the deformation potential of the core states. This revised approach removes assumptions regarding the reference level volume deformation and offers a more reliable prediction of the "natural" unstrained offsets. Comparison is made to experimental work, where a noticeable improvement is found compared to previous methodologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of ferromagnetism in d(0) semiconductors is studied using first-principles methods with ZnO as a prototype material. We show that the presence of spontaneous magnetization in nitrides and oxides with sufficient holes is an intrinsic property of these first-row d(0) semiconductors and can be attributed to the localized nature of the 2p states of O and N. We find that acceptor doping, especially doping at the anion site, can enhance the ferromagnetism with much smaller threshold hole concentrations. The quantum confinement effect also reduces the critical hole concentration to induce ferromagnetism in ZnO nanowires. The characteristic nonmonotonic spin couplings in these systems are explained in terms of the band coupling model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on a modified mean-field model, we calculate the Curie temperatures of Fe2+- and Co2+-doped diluted magnetic semiconductors (DMSs) and their dependence on the hole concentration. We find that the Curie temperatures increase with an increase in hole concentration and the relationship T(C)proportional to p(1/3) also approximately holds for Fe2+- and Co2+-doped systems with moderate hole concentration. For either low or high hole concentrations, however, the p(1/3) law is violated due to the anomalous magnetization of the Fe2+ and Co2+ ions, and the nonparabolic nature of the hole bands. Further, the values of T-C for Fe2+- and Co2+-doped DMSs are significantly higher than those for Mn2+-doped DMSs, due to the larger exchange interaction strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Natural Science Foundation of China 60821061 60776061 10604010 60776063

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel contactless and nondestructive method called the surface electron beam induced voltage (SEBIV) method for characterizing semiconductor materials and devices. The SEBIV method is based on the detection of the surface potential induced by electron beams of scanning electron microscopy (SEM). The core part of the SEBIV detection set-up is a circular metal detector placed above the sample surface. The capacitance between the circular detector and whole surface of the sample is estimated to be about 0.64 pf It is large enough for the detection of the induced surface potential. The irradiation mode of electron beam (e-beam) influences the signal generation. When the e-beam irradiates on the surface of semiconductors continuously, a differential signal is obtained. The real distribution of surface potentials can be obtained when a pulsed e-beam with a fixed frequency is used for irradiation and a lock-in amplifier is employed for detection. The polarity of induced potential depends on the structure of potential barriers and surface states of samples. The contrast of SEBIV images in SEM changes with irradiation time and e-beam intensity.