956 resultados para semi-physical simulation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

To develop real-time simulations of wind instruments, digital waveguides filters can be used as an efficient representation of the air column. Many aerophones are shaped as horns which can be approximated using conical sections. Therefore the derivation of conical waveguide filters is of special interest. When these filters are used in combination with a generalized reed excitation, several classes of wind instruments can be simulated. In this paper we present the methods for transforming a continuous description of conical tube segments to a discrete filter representation. The coupling of the reed model with the conical waveguide and a simplified model of the termination at the open end are described in the same way. It turns out that the complete lossless conical waveguide requires only one type of filter.Furthermore, we developed a digital reed excitation model, which is purely based on numerical integration methods, i.e., without the use of a look-up table.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In finite difference time domain simulation of room acoustics, source functions are subject to various constraints. These depend on the way sources are injected into the grid and on the chosen parameters of the numerical scheme being used. This paper addresses the issue of selecting and designing sources for finite difference simulation, by first reviewing associated aims and constraints, and evaluating existing source models against these criteria. The process of exciting a model is generalized by introducing a system of three cascaded filters, respectively, characterizing the driving pulse, the source mechanics, and the injection of the resulting source function into the grid. It is shown that hard, soft, and transparent sources can be seen as special cases within this unified approach. Starting from the mechanics of a small pulsating sphere, a parametric source model is formulated by specifying suitable filters. This physically constrained source model is numerically consistent, does not scatter incoming waves, and is free from zero- and low-frequency artifacts. Simulation results are employed for comparison with existing source formulations in terms of meeting the spectral and temporal requirements on the outward propagating wave.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cette thèse est divisée en trois chapitres. Le premier explique comment utiliser la méthode «level-set» de manière rigoureuse pour faire la simulation de feux de forêt en utilisant comme modèle physique pour la propagation le modèle de l'ellipse de Richards. Le second présente un nouveau schéma semi-implicite avec une preuve de convergence pour la solution d'une équation de type Hamilton-Jacobi anisotrope. L'avantage principal de cette méthode est qu'elle permet de réutiliser des solutions à des problèmes «proches» pour accélérer le calcul. Une autre application de ce schéma est l'homogénéisation. Le troisième chapitre montre comment utiliser les méthodes numériques des deux premiers chapitres pour étudier l'influence de variations à petites échelles dans la vitesse du vent sur la propagation d'un feu de forêt à l'aide de la théorie de l'homogénéisation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impacts of climate change on crop productivity are often assessed using simulations from a numerical climate model as an input to a crop simulation model. The precision of these predictions reflects the uncertainty in both models. We examined how uncertainty in a climate (HadAM3) and crop General Large-Area Model (GLAM) for annual crops model affects the mean and standard deviation of crop yield simulations in present and doubled carbon dioxide (CO2) climates by perturbation of parameters in each model. The climate sensitivity parameter (lambda, the equilibrium response of global mean surface temperature to doubled CO2) was used to define the control climate. Observed 1966-1989 mean yields of groundnut (Arachis hypogaea L.) in India were simulated well by the crop model using the control climate and climates with values of lambda near the control value. The simulations were used to measure the contribution to uncertainty of key crop and climate model parameters. The standard deviation of yield was more affected by perturbation of climate parameters than crop model parameters in both the present-day and doubled CO2 climates. Climate uncertainty was higher in the doubled CO2 climate than in the present-day climate. Crop transpiration efficiency was key to crop model uncertainty in both present-day and doubled CO2 climates. The response of crop development to mean temperature contributed little uncertainty in the present-day simulations but was among the largest contributors under doubled CO2. The ensemble methods used here to quantify physical and biological uncertainty offer a method to improve model estimates of the impacts of climate change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Every year, Australian firefighters protect our nation from the devastation of bushfire. Understanding the impact of consecutive long shifts in hot, smoky conditions is essential for making decisions during campaign fires. At present, the evidence-base for such decisions is limited to laboratory studies with little relevance to bushfire suppression or field research where the impact of environmental and workload stressors cannot be measured. To counter these limitations, we have developed a three-day simulation that mimics the work and environment of campaign bushfire suppression. Construction of the simulation involved three stages; 1) data collection and analysis; 2) design and development; and 3) trial and refinement. The frequency, intensity, duration and type of physical work performed on the fireground is well documented and a modified applied cognitive task analysis, using experienced firefighters was used as a framework to describe in detail the non-physical aspects of the work. The design and development of the simulation incorporated the physical and non-physical aspects of the work into simulated tasks. Finally, experienced firefighters participated in trials of the simulation and reviewed digital recordings to ensure that the simulation accurately represented campaign bushfire suppression work. The outcome of this project is a valid, realistic, and reliable simulation of the physiological, physical and cognitive aspects of a volunteer firefighter on a three-day bushfire deployment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The construction of synthetic cells is one of the major goals of bioengineering. The most successful approach consists in the encapsulation of biochemical materials (DNA, RNA, enzymes, etc.) inside lipid vesicles (liposomes), mimicking a cell structure. In this contribution, that also aims at introducing the reader to 'chemical synthetic biology,' we describe the current state of the art of 'semi-synthetic minimal cells' (SSMCs), namely, cell-like structures containing the minimal number of biological compounds that are required to reconstruct a function of interest. We will first describe how the concept of the minimal cell was originated and its relation with the theory of autopoiesis, then we review the most advanced results focused on genetic/metabolic networks inside liposomes. Next, we emphasize that relevance of physical aspects (too often neglected) that impact on the solute entrapment process, and finally we discuss new technological trends in SSMC research that will probably allow their future use in biotechnology. © 2013 Copyright © 2013 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of the hydro-physical behavior in soils using toposequences is of great importance for better understanding the soil, water and vegetation relationships. This study aims to assess the hydro-physical and morphological characterization of soil from a toposequence in Galia, state of São Paulo, Brazil). The plot covers an area of 10.24 ha (320 × 320 m), located in a semi-deciduous seasonal forest. Based on ultra-detailed soil and topographic maps of the area, a representative transect from the soil in the plot was chosen. Five profiles were opened for the morphological description of the soil horizons, and hydro-physical and micromorphological analyses were performed to characterize the soil. Arenic Haplustult, Arenic Haplustalf and Aquertic Haplustalf were the soil types observed in the plot. The superficial horizons had lower density and greater hydraulic conductivity, porosity and water retention in lower tensions than the deeper horizons. In the sub-superficial horizons, greater water retention at higher tensions and lower hydraulic conductivity were observed, due to structure type and greater clay content. The differences observed in the water retention curves between the sandy E and the clay B horizons were mainly due to the size distribution, shape and type of soil pores.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the results of a simulation using physical objects. This concept integrates the physical dimensions of an entity such as length, width, and weight, with the usual process flow paradigm, recurrent in the discrete event simulation models. Based on a naval logistics system, we applied this technique in an access channel of the largest port of Latin America. This system is composed by vessel movement constrained by the access channel dimensions. Vessel length and width dictates whether it is safe or not to have one or two ships simultaneously. The success delivered by the methodology proposed was an accurate validation of the model, approximately 0.45% of deviation, when compared to real data. Additionally, the model supported the design of new terminals operations for Santos, delivering KPIs such as: canal utilization, queue time, berth utilization, and throughput capability

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis is about three major aspects of the identification of top quarks. First comes the understanding of their production mechanism, their decay channels and how to translate theoretical formulae into programs that can simulate such physical processes using Monte Carlo techniques. In particular, the author has been involved in the introduction of the POWHEG generator in the framework of the ATLAS experiment. POWHEG is now fully used as the benchmark program for the simulation of ttbar pairs production and decay, along with MC@NLO and AcerMC: this will be shown in chapter one. The second chapter illustrates the ATLAS detectors and its sub-units, such as calorimeters and muon chambers. It is very important to evaluate their efficiency in order to fully understand what happens during the passage of radiation through the detector and to use this knowledge in the calculation of final quantities such as the ttbar production cross section. The last part of this thesis concerns the evaluation of this quantity deploying the so-called "golden channel" of ttbar decays, yielding one energetic charged lepton, four particle jets and a relevant quantity of missing transverse energy due to the neutrino. The most important systematic errors arising from the various part of the calculation are studied in detail. Jet energy scale, trigger efficiency, Monte Carlo models, reconstruction algorithms and luminosity measurement are examples of what can contribute to the uncertainty about the cross-section.