884 resultados para self-imaging effect
Resumo:
Phase locking of two fiber lasers is demonstrated experimentally by the use of a self-imaging resonator with a spatial filter. The high-contrast interference strips of the coherent beam profile are observed. The coherent output power of the fiber array exceeds 12W and the efficiency of coherent power combination is 88% with pump power of 60W. The whole system operates quite stably and, for the spatial filter, no thermal effects have been observed, which means that we can increase the coherent output power further by this method. (c) 2006 Optical Society of America
Resumo:
A phase-locking fibre laser array with up to 60 W of coherent output power based on two large-core fibre is reported. The slope efficiency of the in-phase mode is 37%. For two cases of spacings between the cores, steady high-contrast interference stripes are observed. When the whole system operates under a high pump power level, no thermal effects for the spatial filter have been observed, which means that we can increase the coherent output power further by increasing the individual fibre laser power.
Resumo:
Directional coupler can be constructed by putting multiple photonic crystal waveguides together. The propagation of the optical field entering this system symmetrically was analysed numerically according to self-imaging principle. On the basis of this structure, ultracompact multiway beam splitter was designed and the ones with three and four output channels were discussed in details as examples. By simply tuning the effective refractive index of two dielectric rods in the coupler symmetrically to induce the redistribution of the power of the optical field, uniform or free splitting can be achieved. Compared with the reported results, this way is simpler, more feasible and more efficient and has extensive practical value in future photonic integrated circuits.
Resumo:
Quasi-continuous-wave operation of AlGaAs/GaAs-based quantum cascade lasers (lambda similar to 9 mu m) up to 165 K is reported. The strong temperature dependence of the threshold current density and its higher value in high duty cycle is investigated in detail. The self-heating effect in the active region is explored by changing the operating duty cycles. The degradation of lasing performance with temperature is explained. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Silicon-on-insulator (SOI) has been recognized as a promising semiconductor starting material for ICs where high speed and low power consumption are desirable, in addition to its unique applications in radiation-hardened circuits. In the present paper, three novel SOI nano-layer structures have been demonstrated. ULTRA-THIN SOI has been fabricated by separation by implantation of oxygen (SIMOX) technique at low oxygen ion energy of 45 keV and implantation dosage of 1.81017/cm2. The formed SOI layer is uniform with thickness of only 60 nm. This layer is of crystalline quality. and the interface between this layer and the buried oxide layer is very sharp, PATTERNED SOI nanostructure is illustrated by source and drain on insulator (DSOI) MOSFETs. The DSOI structure has been formed by selective oxygen ion implantation in SIMOX process. With the patterned SOI technology, the floating-body effect and self-heating effect, which occur in the conventional SOI devices, are significantly suppressed. In order to improve the total-dose irradiation hardness of SOI devices, SILICON ON INSULATING MULTILAYERS (SOIM) nano-structure is proposed. The buried insulating multilayers, which are composed of SiOx and SiNy layers, have been realized by implantation of nitride and oxygen ions into silicon in turn at different ion energies, followed by two steps of high temperature annealing process, respectively, Electric property investigation shows that the hardness to the total-dose irradiation of SOIM is remarkably superior to those of the conventional SIMOX SOI and the Bond-and-Etch-Back SOI.
Resumo:
仿真图像生成技术是计算机图形学研究的一个重要内容,在各个方面都有广泛的应用。在航空航天领域,地面的应用处理常常依赖空间探测器拍摄结果,由于实验成本的昂贵,对探测器拍摄结果进行仿真就显得尤其重要。本文主要关注在宇宙空间这一特殊场景下的仿真图像生成方法。针对在空间环境的特点,在分析星空环境下相机成像机理的基础上,从相机光学系统、光感受器工作特性、光圈衍射、电子线路噪声、空间背景等各个方面对星空环境下的成像系统进行了建模,设计了空间环境下成像效果的仿真方案,提出了对各种成像效果、背景星图、CCD噪声的模拟算法。其中基于OpenGL的方法以简单高效的针孔相机模型为基础,结合后期的图像处理,可以在较短的时间内生成仿真结果图像,并能反映拍摄场景下的主要成像效果,在仿真的实时性和结果的真实性之间取得了平衡,而基于物理的渲染方法则精确模拟了成像过程中光线传播的物理过程,能够很好的体现成像系统的光学特征,虽然耗时较长,但是可以生成真实感很强的结果。 基于这些模型和算法,本文还设计并实现了空间环境下的成像仿真系统。用户可以通过该系统来配置空间探测器的任务流程、拍摄参数,来模拟探测器对宇宙目标及背景星空的拍摄结果。由于针对不同拍摄场景设计的各种仿真实验结果均证实了算法和模型的有效性,因此该仿真系统的结果可以作为地面后期应用处理的输入,而本文的研究内容对空间环境中的数据压缩、地面恢复、天文定位、恒星识别等都有重要意义。
Resumo:
On the basis of self-stability effect of four-wave mixings (FWMs) in high-nonlinear photonic-crystal fibres, a novel multi-wavelength erbium-doped fibre (EDF) laser is proposed and demonstrated experimentally at room temperature. The proposed lasers have the capacity of switching and tuning with excellent uniformity and stability. By means of adjusting the attenuators, the triple-, four-, or five-wavelength EDF lasers can be lasing simultaneously. With the assistance of the FWM self-stability function, the multi-wavelength spectrum is excellently stabilized with uniformity less than 0.9 dB.
Resumo:
Silicon-on-insulator (SOI) has been recognized as a promising semiconductor starting material for ICs where high speed and low power consumption are desirable, in addition to its unique applications in radiation-hardened circuits. In the present paper, three novel SOI nano-layer structures have been demonstrated. ULTRA-THIN SOI has been fabricated by separation by implantation of oxygen (SIMOX) technique at low oxygen ion energy of 45 keV and implantation dosage of 1.81017/cm2. The formed SOI layer is uniform with thickness of only 60 nm. This layer is of crystalline quality. and the interface between this layer and the buried oxide layer is very sharp, PATTERNED SOI nanostructure is illustrated by source and drain on insulator (DSOI) MOSFETs. The DSOI structure has been formed by selective oxygen ion implantation in SIMOX process. With the patterned SOI technology, the floating-body effect and self-heating effect, which occur in the conventional SOI devices, are significantly suppressed. In order to improve the total-dose irradiation hardness of SOI devices, SILICON ON INSULATING MULTILAYERS (SOIM) nano-structure is proposed. The buried insulating multilayers, which are composed of SiOx and SiNy layers, have been realized by implantation of nitride and oxygen ions into silicon in turn at different ion energies, followed by two steps of high temperature annealing process, respectively, Electric property investigation shows that the hardness to the total-dose irradiation of SOIM is remarkably superior to those of the conventional SIMOX SOI and the Bond-and-Etch-Back SOI.
Resumo:
Medium polarization effects are studied for S-1(0) pairing in nuclear matter within BHF approach. The screening potential is calculated in the RPA limit, suitably renormalized to cure the low density mechanical instability of nuclear matter. The self-energy corrections are consistently included resulting in a strong depletion of the Fermi surface. The self-energy effects always lead to a quenching of the gap, whereas it is almost completely compensated by the anti-screening effect in nuclear matter.
Resumo:
The Josephson equations for a Bose-Einstein Condensate gas trapped in a double-well potential are derived with the two-mode approximation by the Gross-Pitaevskii equation. The dynamical characteristics of the equations are obtained by the numerical phase diagrams. The nonlinear self-trapping effect appeared in the phase diagrams are emphatically discussed, and the condition EcN > 4E(J) is presented.
Resumo:
A method involving self-concentration, on-column enrichment and field-amplified sample stacking for on-line concentration in capillary electrochromatography with a polymer monolithic column is presented. Since monolithic columns eliminate the frit fabrication and the problems associated with frits, the experimental conditions could be more flexibly adjusted to obtain higher concentration factor in comparison with conventional particulate packed columns. With self-concentration effect, the detection sensitivity of benzene and hexylbenzene is improved by a factor of 4 and 8, respectively. With on-column enrichment and ultralong injection, improvement as high as 22 000 times in detection sensitivity of benzoin is achieved. Furthermore, a combination of the three above-mentioned methods yields up to a 24000-fold improvement in detection sensitivity for caffeine, a charged compound. Parameters affecting the efficiency of on-line concentration are investigated systematically. In addition, equations describing on-line concentration process are deduced.
Resumo:
To pick velocity automatically is not only helpful to improve the efficiency of seismic data process, but also to provide quickly the initial velocity for prestack depth migration. In this thesis, we use the Viterbi algorithm to do automatic picking, but the velocity picked usually is immoderate. By thorough study and analysis, we think that the Viterbi algorithm has the function to do quickly and effectually automatic picking, but the data provided for picking maybe not continuous on derivative of its curved surface, viz., the curved face on velocity spectrum is not slick. Therefore, the velocity picked may include irrational velocity information. To solve the problem above, we develop a new method to filter signal by performing nonlinear transformation of coordinate and filter of function. Here, we call it as Gravity Center Preserved Pulse Compressed Filter (GCPPCF). The main idea to perform the GCPPCF as follows: separating a curve, such as a pulse, to several subsection, calculating the gravity center (coordinate displacement), and then assign the value (density) on the subsection to gravity center. When gravity center departure away from center of its subsection, the value assigned to gravity center is smaller than the actual one, but non other than gravity center anastomoses fully with its subsection center, the assigned value equal to the actual one. By doing so, the curve shape under new coordinate breadthwise narrows down compare to its original one. It is a process of nonlinear transformation of coordinate, due to gravity center changing with the shape of subsection. Furthermore, the gravity function is filter one, because it is a cause of filtering that the value assigned from subsection center to gravity center is obtained by calculating its weight mean of subsetion function. In addition, the filter has the properties of the adaptive time delay changed filter, owing to the weight coefficient used for weight mean also changes with the shape of subsection. In this thesis, the Viterbi algorithm inducted, being applied to auto pick the stack velocity, makes the rule to integral the max velocity spectrum ("energy group") forward and to get the optimal solution in recursion backward. It is a convenient tool to pick automatically velocity. The GCPPCF above not only can be used to preserve the position of peak value and compress the velocity spectrum, but also can be used as adaptive time delay changed filter to smooth object curved line or curved face. We apply it to smooth variable of sequence observed to get a favourable source data ta provide for achieving the final exact resolution. If there is no the adaptive time delay-changed filter to perform optimization, we can't get a finer source data and also can't valid velocity information, moreover, if there is no the Viterbi algorithm to do shortcut searching, we can't pick velocity automatically. Accordingly, combination of both of algorithm is to make an effective method to do automatic picking. We apply the method of automatic picking velocity to do velocity analysis of the wavefield extrapolated. The results calculated show that the imaging effect of deep layer with the wavefield extrapolated was improved dominantly. The GCPPCF above has achieved a good effect in application. It not only can be used to optimize and smooth velocity spectrum, but also can be used to perform a correlated process for other type of signal. The method of automatic picking velocity developed in this thesis has obtained favorable result by applying it to calculate single model, complicated model (Marmousi model) and also the practical data. The results show that it not only has feasibility, but also practicability.
Resumo:
Combining data on structural characteristics and economic performance for a large sample of Italian firms with data on exporting and importing activity, we uncover evidence supporting recent theories on firm heterogeneity and international trade, together with some new facts. In particular, we find that importing is associated with substantial firm heterogeneity. First, we document that trade is more concentrated than employment and sales, and show that importing is even more concentrated than exporting both within sectors and along the sector- and country-extensive margins. Second, while supporting the fact that firms involved in both are the best performers, we also find that firms involved only in importing activities perform better than those involved only in exporting. Our evidence suggests there is a strong self-selection effect in the case of importers and the performance premia of internationalised firms correlate relatively more with the degree of geographical and sectoral diversification of imports.
Resumo:
According to the so-called ‘self-licensing effect’, committing to a virtuous act in a preceding choice may lead to behave less virtuously in the succeeding decision. Consequently, well-intentioned policies can lead to overall counter-productive effects by licensing people to behave badly in related behaviors. On the other side, motivational crowding theory argues that constraining people to adopt a desirable behavior can backfire. We use of a classroom experiment to test whether a regulatory framework to incentivize individuals to adopt pro-environmental behavior generate similar spillovers in terms of licensing effect than a non-regulatory framework. We show that the way the good deed is caused doesn’t seem to influence the licensing effect. Nevertheless, we found that business- and environmental-orientated majors react adversely to the regulatory framework. We show that environmental-orientated students exhibit higher intrinsically motivations than business-orientated ones. Accordingly, we suggest that the licensing effect is more likely to arise when the preceding ‘virtuous’ act is freely chosen (respectively regulatory caused) for non-intrinsically (respectively intrinsically) motivated individuals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)