988 resultados para seed development
Resumo:
The promoters of MEA (FIS1), FIS2, and FIE (FIS3), genes that repress seed development in the absence of pollination, were fused to β-glucuronidase (GUS) to study their activity pattern. The FIS2∷GUS product is found in the embryo sac, in each of the polar cell nuclei, and in the central cell nucleus. After pollination, the maternally derived FIS2∷GUS protein occurs in the nuclei of the cenocytic endosperm. Before cellularization of the endosperm, activity is terminated in the micropylar and central nuclei of the endosperm and subsequently in the nuclei of the chalazal cyst. MEA∷GUS has a pattern of activity similar to that of FIS2∷GUS, but FIE∷GUS protein is found in many tissues, including the prepollination embryo sac, and in embryo and endosperm postpollination. The similarity in mutant phenotypes; the activity of FIE, MEA, and FIS2 in the same cells in the embryo sac; and the fact that MEA and FIE proteins interact in a yeast two-hybrid system suggest that these proteins operate in the same system of control of seed development. Maternal and not paternal FIS2∷GUS, MEA∷GUS, and FIE∷GUS show activity in early endosperm, so these genes may be imprinted. When fis2, mea, and fie mutants are pollinated, seed development is arrested at the heart embryo stage. The seed arrest of mea and fis2 is avoided when they are fertilized by a low methylation parent. The wild-type alleles of MEA or FIS2 are not required. The parent-of-origin-determined differential activity of MEA, FIS2, and FIE is not dependent on DNA methylation, but methylation does control some gene(s) that have key roles in seed development.
Resumo:
The induction of napin and oleosin gene expression in Brassica napus microspore-derived embryos (MDEs) was studied to assess the possible interaction between abscisic acid (ABA) and jasmonic acid (JA). Napin and oleosin transcripts were detected sooner following treatment with ABA than JA. Treatment of MDEs with ABA plus JA gave an additive accumulation of both napin and oleosin mRNA, the absolute amount being dependent on the concentration of each hormone. Endogenous ABA levels were reduced by 10-fold after treatment with JA, negating the possibility that the observed additive interaction was due to JA-induced ABA biosynthesis. Also, JA did not significantly increase the uptake of [3H-ABA] from the medium into MDEs. This suggests that the additive interaction was not due to an enhanced carrier-mediated ABA uptake by JA. Finally, when JA was added to MDEs that had been treated with the ABA biosynthesis inhibitor fluridone, napin mRNA did not increase. Based on these results with the MDE system, it is possible that embryos of B. napus use endogenous JA to modulate ABA effects on expression of both napin and oleosin. In addition, JA could play a causal role in the reduction of ABA that occurs during late stages of seed development.
Resumo:
Abscisic acid (ABA) is a plant hormone involved in the control of a wide range of physiological processes, including adaptation to environmental stress and seed development. In higher plants ABA is a breakdown product of xanthophyll carotenoids (C40) via the C15 intermediate xanthoxin. The ABA2 gene of Nicotiana plumbaginifolia encodes zeaxanthin epoxidase, which catalyzes the conversion of zeaxanthin to violaxanthin. In this study we analyzed steady-state levels of ABA2 mRNA in N. plumbaginifolia. The ABA2 mRNA accumulated in all plant organs, but transcript levels were found to be higher in aerial parts (stems and leaves) than in roots and seeds. In leaves ABA2 mRNA accumulation displayed a day/night cycle; however, the ABA2 protein level remained constant. In roots no diurnal fluctuation in mRNA levels was observed. In seeds the ABA2 mRNA level peaked around the middle of development, when ABA content has been shown to increase in many species. In conditions of drought stress, ABA levels increased in both leaves and roots. A concomitant accumulation of ABA2 mRNA was observed in roots but not in leaves. These results are discussed in relation to the role of zeaxanthin epoxidase both in the xanthophyll cycle and in the synthesis of ABA precursors.
Resumo:
Developing chickpea (Cicer arietinum L.) seeds 12 to 60 d after flowering (DAF) were analyzed for proteinase inhibitor (Pi) activity. In addition, the electrophoretic profiles of trypsin inhibitor (Ti) accumulation were determined using a gel-radiographic film-contact print method. There was a progressive increase in Pi activity throughout seed development, whereas the synthesis of other proteins was low from 12 to 36 DAF and increased from 36 to 60 DAF. Seven different Ti bands were present in seeds at 36 DAF, the time of maximum podborer (Helicoverpa armigera) attack. Chickpea Pis showed differential inhibitory activity against trypsin, chymotrypsin, H. armigera gut proteinases, and bacterial proteinase(s). In vitro proteolysis of chickpea Ti-1 with various proteinases generated Ti-5 as the major fragment, whereas Ti-6 and -7 were not produced. The amount of Pi activity increased severalfold when seeds were injured by H. armigera feeding. In vitro and in vivo proteolysis of the early- and late-stage-specific Tis indicated that the chickpea Pis were prone to proteolytic digestion by H. armigera gut proteinases. These data suggest that survival of H. armigera on chickpea may result from the production of inhibitor-insensitive proteinases and by secretion of proteinases that digest chickpea Pis.
Resumo:
Gibberellins (GAs) are a major class of plant hormones that control many developmental processes, including seed development and germination, flower and fruit development, and flowering time. Genetic studies with Arabidopsis thaliana have identified two genes involved in GA perception or signal transduction. A semidominant mutation at the GIBBERELLIN INSENSITIVE (GAI) locus results in plants resembling GA-deficient mutants but exhibiting reduced sensitivity to GA. Recessive mutations at the SPINDLY (SPY) locus cause a phenotype that is consistent with constitutive activation of GA signal transduction. Here we show that a strong allele of spy is completely epistatic to gai, indicating that SPY acts downstream of GAI. We have cloned the SPY gene and shown that it encodes a new type of signal transduction protein, which contains a tetratricopeptide repeat region, likely serving as a protein interaction domain, and a novel C-terminal region. Mutations in both domains increase GA signal transduction. The presence of a similar gene in Caenorhabditis elegans suggests that SPY represents a class of signal transduction proteins that is present throughout the eukaryotes.
Resumo:
Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos.
Resumo:
Background: Wheat 1BL/1RS translocation lines are planted around the world for their disease resistance and high yield. Most of them are poor in bread making, which is partially caused by ω-secalins that are encoded by the ω-secalin gene family, which is located on the short arm of rye chromosome 1R (1RS). However, information on the structure and evolution of the ω-secalin gene family is still limited. Results: We first generated a physicalmap of the ω-secalin gene family covering 195 kb of the Sec-1 locus based on sequencing three bacterial artificial chromosome (BAC) clones of the 1BL/1RS translocation wheat cultivar Shimai 15. A BAC contig was constructed spanning 168 kb of the Sec-1 locus on 1RS. Twelve ω-secalin genes were arranged in a head-to-tail fashion, separated by 8.2–21.6 kb spacers on the contig, whereas six other ω-secalin genes were arranged head-to-tail, separated by 8.2–8.4 kb of spacers on clone BAC125. The 18 ω-secalin genes can be classified into six types among which eight ω-secalin genes were expressed during seed development. The ω-secalin genes with the 1074-bp open reading frame (ORF) represented the main population. Except for two pseudogenes, the N-terminal of the ω-secalin gene was conserved, whereas variations in the C-terminal led to a change in ORF length. The spacers can be sorted into two classes. Class-1 spacers contained conserved and non-conservative sequences. Conclusion: The ω-secalin gene family consisted of at least 18 members in the 1BL/1RS translocation line cv. Shimai 15. Eight ω-secalin genes were expressed during seed development. Eighteen members may originate from a progenitor with a 1,074-bp ORF. The spacers differed in length and sequence conservation.
Resumo:
desenvolvimento de novas cultivares de uvas sem sementes é uma das prioridades dos programas de melhoramento de uvas de mesa do mundo. Em trabalho anterior o nosso grupo detectou um QTL (quantitative trait locus) para ausência de sementes no cromossomo 18 no locus SDI (seed development inhibitor). Evidências adicionais demonstraram que o gene VvAGL11, localizado neste locus, possui papel fundamental na morfogênese de sementes em videira. O objetivo deste trabalho foi genotipar acessos apirêincos e pirênicos com nove marcadores do tipo SNP e INDEL únicos para o alelo associado a ausência de sementes em Vitis vinifera e verificar se a metodologia de genotipagem baseada em KASP? tem potencial de uso em seleção assistida.
Resumo:
Sunflower is one of the most important oilseed crops and produces a high-quality edible oil. Balance of fatty acids in standard sunflower oil shows preponderance of linoleic rather than oleic acid, and conditions during seed development, such as temperature, changes the oleic/linoleic ratio of the oil. This work aimed to evaluate the environmental effect on fatty acid profile in a group of standard and high oleic varieties and hybrids. Seeds were produced during regular season crop and during off-season crop featuring different temperatures from anthesis to maturity. Fatty acid composition was determined by gas chromatography. Levels of oleic acid, in standard oil genotypes, raised as the crop developed in warmer environment while levels of linoleic acid decreased, and the opposite was observed when the crop was grown under lower temperature. High oleic genotypes were less sensitive to environment switching and showed lower variation on fatty acid composition.
Resumo:
The pattern of growth and development of seed crops of stylo (Stylosanthes guyanensis) was derived from measurements made on experimental and commercial crops in north Queensland. The three cultivars Cook, Endeavour, and Schofield differed appreciably only in the timetable of their development. Each had distinct successive phases of vegetative and reproductive development culminating in total annual seed production of 700-800 kg ha-1 from a healthy closed canopy, the main recorded cause of reduced production being the disease Botrytis sp. In a healthy crop of Cook, the peak quantity of standing seed represented almost 90 per cent of the total accountable seed, and the rise to and decline from this peak proceeded at rates of the order of 3-4 per cent per day. It is deduced that, although there appears to be little potential for either increase in overall production or improvement in synchronization or retention characteristics beyond that currently attained by a closed canopy of healthy plants, there is scope for an increase in the efficiency of recovery of standing seed. Maximum recovery will be achieved through attention to choice of time of harvest, presentation of a minimum amount of extraneous vegetation to the harvester, and improvement in harvester separation.
Resumo:
Phyllospadix iwatensis Makino and phyllospadix japonicus Makino have similar frunt morphology and anatomy.The rhomboid fruit of Japanese phyllospadix is dark brown in colour and is characterized by two arms bearing stiff inflected bristles which can act as an anchoring system. The fruit covering consists of a thin cuticular seed coat and pericarp remains mainly fibrous endocarp. In the groove region of the fruit.the cuticular seed coat and endocarp are replaced by nucellus cells with wall in growths and crushed pigment strands with lignified walls.these tissues appera to control the transfer of nutrients to developing seed.the seed is oval with a small embryo and a large hypocotyl. the embryo is straight and simple,with the plumule containing three leaf primordia and a pair of root primordia surrounded by a cotyledon.the hypocotyl has large vontral lobe containing central provascular tissue and two small dorsal lobes.the hypocotyl contains starch.lipid and protein.and acts as a nutrient store.the seed of P.iwatensis has a dormancy period of 2-6 weeks and germination eventually reaches-65%.but is not synchronized.during germination the leaves emerge first.and then after at least three young leaves have formed and abseised.the roots emerge,usually?6 months after the commencement of germination.Utilizaton of the nutrient reserves is initially from the perihpery of the hypocotyl and then progressively towards its centre.
Resumo:
Flowering and seed-bank development of annual Zostera marina L. and perennial Z. noltii hornem. were studied in the Zandkreek (S.W. Netherlands). Flowering of Z. noltii started at the end of June and continued until the end of September. A maximum of ca. 1000 flowering shoots (11% of the total amount of shoots per square metre) occurred in early August. Flowering of Z. marina started at the end of July and continued throughout October. Seed banks of both species appeared to be annual. Actual seed densities of Z. noltii were much lower than predicted on the basis of the amount of inflorescences.Germination was studied in the laboratory in relation to temperature (10, 20 and 30°C), salinity (1.0, 10.0, 20.0, 30.0 and 40.0‰) and stratification (at 4°C). Both species showed a maximal germination at 30°C and 1.0‰ salinity, decreasing with higher salinities and lower temperatures. Stratification stimulated germination only at salinities 20.0‰. Desiccation and anaerobia were lethal to Z. marina seeds. Seedlings of Z. marina survived best at 10°C and 10.0–20.0‰ salinity and those of Z. noltii survived best at 10°C and 1.0‰ salinity. Overall, seedlings of Z. marina survived better than those of Z. noltii.