999 resultados para secondary heat
Resumo:
Secondary neurodegeneration takes place in the surrounding tissue of spinal cord trauma and modifies substantially the prognosis, considering the small diameter of its transversal axis. We analyzed neuronal and glial responses in rat spinal cord after different degree of contusion promoted by the NYU Impactor. Rats were submitted to vertebrae laminectomy and received moderate or severe contusions. Control animals were sham operated. After 7 and 30 days post surgery, stereological analysis of Nissl staining cellular profiles showed a time progression of the lesion volume after moderate injury, but not after severe injury. The number of neurons was not altered cranial to injury. However, same degree of diminution was seen in the caudal cord 30 days after both severe and moderate injuries. Microdensitometric image analysis demonstrated a microglial reaction in the white matter 30 days after a moderate contusion and showed a widespread astroglial reaction in the white and gray matters 7 days after both severities. Astroglial activation lasted close to lesion and in areas related to Wallerian degeneration. Data showed a more protracted secondary degeneration in rat spinal cord after mild contusion, which offered an opportunity for neuroprotective approaches. Temporal and regional glial responses corroborated to diverse glial cell function in lesioned spinal cord. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 +/- 0.7 years; 80.5 +/- 2.0 kg; 180 +/- 2 cm, mean +/- SE) exercised for 60 min in a hot, dry environment (40 +/- 0A degrees C and 45 A +/- 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1A degrees C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 A +/- 0.07, POST: 1.48 A +/- 0.10, 1 h POST: 1.22 A +/- 0.11 ng mL(-1); p < 0.05). In HST2, there was no change in plasma Hsp72 (REST: 0.94 A +/- 0.08, POST: 1.20 A +/- 0.15, 1 h POST: 1.17 A +/- 0.16 ng mL(-1); p > 0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 A +/- 0.02 and HST2: 4.2 A +/- 1.2 density units, p < 0.05). Exercise-induced increased intracellular Hsp72 expression was observed on HST1 (HST1: REST, 1 A +/- 0.02 vs. POST, 2.9 A +/- 0.9 density units, mean +/- SE, p < 0.05) but was inhibited on HST2 (HST2: REST, 4.2 +/- 1.2 vs. POST, 4.4 +/- 1.1 density units, p > 0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = -0.85, p < 0.05). In conclusion, HA increased resting leukocyte Hsp72 levels and inhibited exercise-induced expression. This intracellular adaptation probably induces thermotolerance. In addition, the non-increase in plasma Hsp72 after HA may be related to lower stress at the cellular level in the acclimated individuals.
Resumo:
In this work, Ti(92)B(8) alloy was processed via rapid solidification (splat-cooling) and then heat-treated at 700 degrees C and 1000 degrees C. A careful microstructural characterization indicated that, after rapid solidification, a very fine two-phase microstructure was produced with no significant saturation of B in alpha/beta Ti. There was no indication of amorphous formation in the rapidly solidified splats. Both alpha Ti and TiB were observed in the microstructures of the splats after heat-treatment at 700 degrees C and 1000 degrees C, confirming the stability of the alpha Ti+TiB two-phase region in this temperature range. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Nb(3)Sn is one of the most used superconducting materials for applications in high magnetic fields. The improvement of the critical current densities (J(c)) is important, and must be analyzed together with the optimization of the flux pinning acting in the material. For Nb(3)Sn, it is known that the grain boundaries are the most effective pinning centers. However, the introduction of artificial pinning centers (APCs) with different superconducting properties has been proved to be beneficial for J(c). As these APCs are normally in the nanometric-scale, the conventional heat treatment profiles used for Nb(3)Sn wires cannot be directly applied, leading to excessive grain growth and/or increase of the APCs cross sections. In this work, the heat treatment profiles for Nb(3)Sn superconductor wires with Cu(Sn) artificial pinning centers in nanometric-scale were analyzed in an attempt to improve J(c) . It is described a methodology to optimize the heat treatment profiles in respect to diffusion, reaction and formation of the superconducting phases. Microstructural, transport and magnetic characterization were performed in an attempt to find the pinning mechanisms acting in the samples. It was concluded that the maximum current densities were found when normal phases (due to the introduction of the APCs) are acting as main pinning centers in the global behavior of the Nb(3)Sn superconducting wire.
Resumo:
Since the discovery of Nb(3)Sn superconductors many efforts have been expended to improve the transport properties in these materials. In this work, the heat treatment profiles for Nb(3)Sn superconductor wires with Cu(Sn) artificial pinning centers (APCs) with nanometric-scale sizes were analyzed in an attempt to improve the critical current densities and upper critical magnetic field. The methodology to optimize the heat treatment profiles in respect to the diffusion, reaction and formation of the superconducting phases is described. Microstructural characterization, transport and magnetic measurements were performed in an attempt to relate the microstructure to the pinning mechanisms acting in the samples. It was concluded that the maximum current densities occur due to normal phases (APCs) that act as the main pinning centers in the global behavior of the Nb(3)Sn superconducting wire. The APC technique was shown to be very powerful because it permitted mixing of the pinning mechanism. This achievement was not possible in other studies in Nb(3)Sn wires reported up to now.
Resumo:
The development of Nb(3)Al and Nb(3)Sn superconductors is of great interest for the applied superconductivity area. These intermetallics composites are obtained normally by heat treatment reactions at high temperature. Processes that allow formation of the superconducting phases at lower temperatures (<1000 degrees C), particularly for Nb(3)Al, are of great interest. The present work studies phase formation and stability of Nb(3)Al and Nb(3)Sn superconducting phases using mechanical alloying (high energy ball milling). Our main objective was to form composites near stoichiometry, which could be transformed into the superconducting phases using low-temperature heat treatments. High purity Nb-Sn and Nb-Al powders were mixed to generate the required superconducting phases (Nb-25at.%Sn and Nb-25at.%Al) in an argon atmosphere glove-box. After milling in a Fritsch mill, the samples were compressed in a hydraulic uniaxial press and encapsulated in evacuated quartz tubes for heat treatment. The compressed and heat treated samples were characterized using X-ray diffractometry. Microstructure and chemical analysis were accomplished using scanning electron microscopy and energy dispersive spectrometry. Nb(3)Al XRD peaks were observed after the sintering at 800 degrees C for the sample milled for 30 h. Nb(3)Sn XRD peaks could be observed even before the heat treatment. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents new experimental flow boiling heat transfer results in micro-scale tubes. The experimental data were obtained in a horizontal 2.3 mm I.D stainless steel tube with heating length of 464 mm, R134a and R245fa as working fluids, mass velocities ranging from 50 to 700 kg m(-2) s(-1), heat flux from 5 to 55 kW m(-2), exit saturation temperatures of 22, 31 and 41 degrees C, and vapor qualities ranging from 0.05 to 0.99. Flow pattern characterization was also performed from images obtained by high-speed filming. Heat transfer coefficient results from 1 to 14 kW m(-2) K(-1) were measured. It was found that the heat transfer coefficient is a strong function of heat flux, mass velocity and vapor quality. The experimental data were compared against ten flow boiling predictive methods from the literature. Liu and Winterton [3], Zhang et al. [5] and Saitoh et al. [6] worked best for both fluids, capturing most of the experimental heat transfer trends. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The objective of the present paper is to thermally characterize a cross-flow heat exchanger featuring a new cross-flow arrangement, which may find application in contemporary refrigeration and automobile industries. The new flow arrangement is peculiar in the sense that it possesses two fluid circuits extending in the form of two tube rows, each with two tube lines. To assess the heat exchanger performance, it is compared against that for the standard two-pass counter-cross-flow arrangement. The two-part comparison is based on the thermal effectiveness and the heat exchanger efficiency for several combinations of the heat capacity rate ratio, C*, and the number of transfer units, NTU. In addition, a third comparison is made in terms of the so-called ""heat exchanger reversibility norm"" (HERN) through the influence of various parameters such as the inlet temperature ratio, T, and the heat capacity rate ratio, C*, for several fixed NTU values. The proposed new flow arrangement delivers higher thermal effectiveness and higher heat exchanger efficiency, resulting in lesser entropy generation over a wide range of C* and NTU values. These metrics are quantified with respect to the arrangement widely used in refrigeration industry due to its high effectiveness, namely, the standard two-pass counter-cross-flow heat exchanger. The new flow arrangement seems to be a promising avenue in situations where cross-flow heat exchangers for single-phase fluid have to be used in refrigeration units. (c) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
The machining of hardened steels has always been a great challenge in metal cutting, particularly for drilling operations. Generally, drilling is the machining process that is most difficult to cool due to the tool`s geometry. The aim of this work is to determine the heat flux and the coefficient of convection in drilling using the inverse heat conduction method. Temperature was assessed during the drilling of hardened AISI H13 steel using the embedded thermocouple technique. Dry machining and two cooling/lubrication systems were used, and thermocouples were fixed at distances very close to the hole`s wall. Tests were replicated for each condition, and were carried out with new and worn drills. An analytical heat conduction model was used to calculate the temperature at tool-workpiece interface and to define the heat flux and the coefficient of convection. In all tests using new and worn out drills, the lowest temperatures and decrease of heat flux were observed using the flooded system, followed by the MQL, considering the dry condition as reference. The decrease of temperature was directly proportional to the amount of lubricant applied and was significant in the MQL system when compared to dry cutting. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Rotifera density, biomass, and secondary production on two marginal lakes of Paranapanema River were compared after the recovery of hydrologic connectivity with the river (Sao Paulo State, Brazil). Daily samplings were performed in limnetic zone of both lakes during the rainy season immediately after lateral inflow of water and, in the dry period, six months after hydrologic connectivity recovery. In order to identify the factors that affect rotifer population dynamics, lake water level, volume, depth, temperature, transparency, dissolved oxygen, pH, alkalinity, conductivity, suspended solids, nutrients, and chlorophyll-a were determined. Variations of water physical and chemical factors that affect rotifer population were related to the lake-river degree of connection and to water level rising after drought. The water lateral inflow from the river resulted in an increase in lake water volume, depth, and transparency and a decrease in water pH, alkalinity, and suspended solids. The lake with the wider river connection, more frequent biota exchange, and larger amount of particulate and dissolved materials was richer and more diverse, while rotifer density, biomass, and productivity were lower in both periods studied. Density, biomass, and secondary production were higher in the lake with the smaller river connection and the higher physical and chemical stability. Our results show that the connectivity affects the limnological stability, associated to seasonality. Stable conditions, caused by low connectivity in dry periods, were related with high density, biomass and secondary production. Conversely, instability conditions in rainy periods were associated to elevated richness and diversity values, caused by exchange biota due to higher connectivity. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
This study evaluates the stability of hydrogen and organic acids production in an anaerobic fluidized-bed reactor (AFBR) that contains expanded clay (2.8-3.35 mm in diameter) as a support medium and is operated on a long-term basis. The reactor was inoculated with thermally pre-treated anaerobic sludge and operated with decreasing hydraulic retention time (HRT), from 8 h to 1 h, at a controlled temperature of 30 degrees C and a pH of about 3.8. Glucose (2000 mg L(-1)) was used as the substrate, generating conversion rates of 92-98%. Decreasing the HRT from 8 h to 1 h led to an increase in average hydrogen-production rates, with a maximum value of 1.28 L h(-1) L(-1) for an HRT of 1 h. In general, hydrogen yield production increased as HRT decreased, reaching 2.29 mol of H(2)/mol glucose at an HRT of 2 h and yielding a maximum hydrogen content of 37% in the biogas. No methane was detected in the biogas throughout the period of operation. The main soluble metabolites (SMP) were acetic acid (46.94-53.84% of SMP) and butyric acid (34.51-42.16% of SMP), with less than 15.49% ethanol. The steady performance of the AFBR may be attributed to adequate thermal treatment of the inoculum, the selection of a suitable support medium for microbial adhesion, and the choice of satisfactory environmental conditions imposed on the system. The results show that stable hydrogen production and organic acids production were maintained in the AFBR over a period of 178 days. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper presents results of an experimental investigation carried out to determine the effects of the surface roughness of different materials on nucleate boiling heat transfer of refrigerants R-134a and R-123. Experiments have been performed over cylindrical surfaces of copper, brass and stainless steel. Surfaces have been treated by different methods in order to obtain an average roughness, Ra, varying from 0.03 mu m to 10.5 mu m. Boiling curves at different reduced pressures have been raised as part of the investigation. The obtained results have shown significant effects of the surface material, with brass being the best performing and stainless steel the worst. Polished surfaces seem to present slightly better performance than the sand paper roughened. Boiling on very rough surfaces presents a peculiar behavior characterized by good thermal performance at low heat fluxes, the performance deteriorating at high heat fluxes with respect to smoother surfaces. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Corresponding to the updated flow pattern map presented in Part I of this study, an updated general flow pattern based flow boiling heat transfer model was developed for CO2 using the Cheng-Ribatski-Wojtan-Thome [L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes, Int. J. Heat Mass Transfer 49 (2006) 4082-4094; L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, Erratum to: ""New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside tubes"" [Heat Mass Transfer 49 (21-22) (2006) 4082-4094], Int. J. Heat Mass Transfer 50 (2007) 391] flow boiling heat transfer model as the starting basis. The flow boiling heat transfer correlation in the dryout region was updated. In addition, a new mist flow heat transfer correlation for CO2 was developed based on the CO2 data and a heat transfer method for bubbly flow was proposed for completeness sake. The updated general flow boiling heat transfer model for CO2 covers all flow regimes and is applicable to a wider range of conditions for horizontal tubes: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m(2) s, heat fluxes from 1.8 to 46 kW/m(2) and saturation temperatures from -28 to 25 degrees C (reduced pressures from 0.21 to 0.87). The updated general flow boiling heat transfer model was compared to a new experimental database which contains 1124 data points (790 more than that in the previous model [Cheng et al., 2006, 2007]) in this study. Good agreement between the predicted and experimental data was found in general with 71.4% of the entire database and 83.2% of the database without the dryout and mist flow data predicted within +/-30%. However, the predictions for the dryout and mist flow regions were less satisfactory due to the limited number of data points, the higher inaccuracy in such data, scatter in some data sets ranging up to 40%, significant discrepancies from one experimental study to another and the difficulties associated with predicting the inception and completion of dryout around the perimeter of the horizontal tubes. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Direct stability analysis and numerical simulations have been employed to identify and characterize secondary instabilities in the wake of the flow around two identical circular cylinders in tandem arrangements. The centre-to-centre separation was varied from 1.2 to 10 cylinder diameters. Four distinct regimes were identified and salient cases chosen to represent the different scenarios observed, and for each configuration detailed results are presented and compared to those obtained for a flow around an isolated cylinder. It was observed that the early stages of the wake transition changes significantly if the separation is smaller than the drag inversion spacing. The onset of the three-dimensional instabilities were calculated and the unstable modes are fully described. In addition, we assessed the nonlinear character of the bifurcations and physical mechanisms are proposed to explain the instabilities. The dependence of the critical Reynolds number on the centre-to-centre separation is also discussed.
Resumo:
The objective of this work is to develop an improved model of the human thermal system. The features included are important to solve real problems: 3D heat conduction, the use of elliptical cylinders to adequately approximate body geometry, the careful representation of tissues and important organs, and the flexibility of the computational implementation. Focus is on the passive system, which is composed by 15 cylindrical elements and it includes heat transfer between large arteries and veins. The results of thermal neutrality and transient simulations are in excellent agreement with experimental data, indicating that the model represents adequately the behavior of the human thermal system. (C) 2009 Elsevier Ltd. All rights reserved.