989 resultados para scattered data interpolation
Progress on “Changing coastlines: data assimilation for morphodynamic prediction and predictability”
Resumo:
The task of assessing the likelihood and extent of coastal flooding is hampered by the lack of detailed information on near-shore bathymetry. This is required as an input for coastal inundation models, and in some cases the variability in the bathymetry can impact the prediction of those areas likely to be affected by flooding in a storm. The constant monitoring and data collection that would be required to characterise the near-shore bathymetry over large coastal areas is impractical, leaving the option of running morphodynamic models to predict the likely bathymetry at any given time. However, if the models are inaccurate the errors may be significant if incorrect bathymetry is used to predict possible flood risks. This project is assessing the use of data assimilation techniques to improve the predictions from a simple model, by rigorously incorporating observations of the bathymetry into the model, to bring the model closer to the actual situation. Currently we are concentrating on Morecambe Bay as a primary study site, as it has a highly dynamic inter-tidal zone, with changes in the course of channels in this zone impacting the likely locations of flooding from storms. We are working with SAR images, LiDAR, and swath bathymetry to give us the observations over a 2.5 year period running from May 2003 – November 2005. We have a LiDAR image of the entire inter-tidal zone for November 2005 to use as validation data. We have implemented a 3D-Var data assimilation scheme, to investigate the improvements in performance of the data assimilation compared to the previous scheme which was based on the optimal interpolation method. We are currently evaluating these different data assimilation techniques, using 22 SAR data observations. We will also include the LiDAR data and swath bathymetry to improve the observational coverage, and investigate the impact of different types of observation on the predictive ability of the model. We are also assessing the ability of the data assimilation scheme to recover the correct bathymetry after storm events, which can dramatically change the bathymetry in a short period of time.
Resumo:
During the past 15 years, a number of initiatives have been undertaken at national level to develop ocean forecasting systems operating at regional and/or global scales. The co-ordination between these efforts has been organized internationally through the Global Ocean Data Assimilation Experiment (GODAE). The French MERCATOR project is one of the leading participants in GODAE. The MERCATOR systems routinely assimilate a variety of observations such as multi-satellite altimeter data, sea-surface temperature and in situ temperature and salinity profiles, focusing on high-resolution scales of the ocean dynamics. The assimilation strategy in MERCATOR is based on a hierarchy of methods of increasing sophistication including optimal interpolation, Kalman filtering and variational methods, which are progressively deployed through the Syst`eme d’Assimilation MERCATOR (SAM) series. SAM-1 is based on a reduced-order optimal interpolation which can be operated using ‘altimetry-only’ or ‘multi-data’ set-ups; it relies on the concept of separability, assuming that the correlations can be separated into a product of horizontal and vertical contributions. The second release, SAM-2, is being developed to include new features from the singular evolutive extended Kalman (SEEK) filter, such as three-dimensional, multivariate error modes and adaptivity schemes. The third one, SAM-3, considers variational methods such as the incremental four-dimensional variational algorithm. Most operational forecasting systems evaluated during GODAE are based on least-squares statistical estimation assuming Gaussian errors. In the framework of the EU MERSEA (Marine EnviRonment and Security for the European Area) project, research is being conducted to prepare the next-generation operational ocean monitoring and forecasting systems. The research effort will explore nonlinear assimilation formulations to overcome limitations of the current systems. This paper provides an overview of the developments conducted in MERSEA with the SEEK filter, the Ensemble Kalman filter and the sequential importance re-sampling filter.
Resumo:
This paper describes the implementation of a 3D variational (3D-Var) data assimilation scheme for a morphodynamic model applied to Morecambe Bay, UK. A simple decoupled hydrodynamic and sediment transport model is combined with a data assimilation scheme to investigate the ability of such methods to improve the accuracy of the predicted bathymetry. The inverse forecast error covariance matrix is modelled using a Laplacian approximation which is calibrated for the length scale parameter required. Calibration is also performed for the Soulsby-van Rijn sediment transport equations. The data used for assimilation purposes comprises waterlines derived from SAR imagery covering the entire period of the model run, and swath bathymetry data collected by a ship-borne survey for one date towards the end of the model run. A LiDAR survey of the entire bay carried out in November 2005 is used for validation purposes. The comparison of the predictive ability of the model alone with the model-forecast-assimilation system demonstrates that using data assimilation significantly improves the forecast skill. An investigation of the assimilation of the swath bathymetry as well as the waterlines demonstrates that the overall improvement is initially large, but decreases over time as the bathymetry evolves away from that observed by the survey. The result of combining the calibration runs into a pseudo-ensemble provides a higher skill score than for a single optimized model run. A brief comparison of the Optimal Interpolation assimilation method with the 3D-Var method shows that the two schemes give similar results.
Resumo:
The possibility of using a time sequence of surface pressure observations in four-dimensional data assimilation is being investigated. It is shown that a linear multilevel quasi-geostrophic model can be updated successfully with surface data alone, provided the number of time levels are at least as many as the number of vertical levels. It is further demonstrated that current statistical analysis procedures are very inefficient to assimilate surface observations, and it is shown by numerical experiments that the vertical interpolation must be carried out using the structure of the most dominating baroclinic mode in order to obtain a satisfactory updating. Different possible ways towards finding a practical solution are being discussed.
Resumo:
A system for continuous data assimilation is presented and discussed. To simulate the dynamical development a channel version of a balanced barotropic model is used and geopotential (height) data are assimilated into the models computations as data become available. In the first experiment the updating is performed every 24th, 12th and 6th hours with a given network. The stations are distributed at random in 4 groups in order to simulate 4 areas with different density of stations. Optimum interpolation is performed for the difference between the forecast and the valid observations. The RMS-error of the analyses is reduced in time, and the error being smaller the more frequent the updating is performed. The updating every 6th hour yields an error in the analysis less than the RMS-error of the observation. In a second experiment the updating is performed by data from a moving satellite with a side-scan capability of about 15°. If the satellite data are analysed at every time step before they are introduced into the system the error of the analysis is reduced to a value below the RMS-error of the observation already after 24 hours and yields as a whole a better result than updating from a fixed network. If the satellite data are introduced without any modification the error of the analysis is reduced much slower and it takes about 4 days to reach a comparable result to the one where the data have been analysed.
Resumo:
With the introduction of new observing systems based on asynoptic observations, the analysis problem has changed in character. In the near future we may expect that a considerable part of meteorological observations will be unevenly distributed in four dimensions, i.e. three dimensions in space and one in time. The term analysis, or objective analysis in meteorology, means the process of interpolating observed meteorological observations from unevenly distributed locations to a network of regularly spaced grid points. Necessitated by the requirement of numerical weather prediction models to solve the governing finite difference equations on such a grid lattice, the objective analysis is a three-dimensional (or mostly two-dimensional) interpolation technique. As a consequence of the structure of the conventional synoptic network with separated data-sparse and data-dense areas, four-dimensional analysis has in fact been intensively used for many years. Weather services have thus based their analysis not only on synoptic data at the time of the analysis and climatology, but also on the fields predicted from the previous observation hour and valid at the time of the analysis. The inclusion of the time dimension in objective analysis will be called four-dimensional data assimilation. From one point of view it seems possible to apply the conventional technique on the new data sources by simply reducing the time interval in the analysis-forecasting cycle. This could in fact be justified also for the conventional observations. We have a fairly good coverage of surface observations 8 times a day and several upper air stations are making radiosonde and radiowind observations 4 times a day. If we have a 3-hour step in the analysis-forecasting cycle instead of 12 hours, which is applied most often, we may without any difficulties treat all observations as synoptic. No observation would thus be more than 90 minutes off time and the observations even during strong transient motion would fall within a horizontal mesh of 500 km * 500 km.
Resumo:
Three rapid, poleward bursts of plasma flow, observed by the U.K.-POLAR EISCAT experiment, are studied in detail. In all three cases the large ion velocities (> 1 kms−1) are shown to drive the ion velocity distribution into a non-Maxwellian form, identified by the characteristic shape of the observed spectra and the fact that analysis of the spectra with the assumption of a Maxwellian distribution leads to excessive rises in apparent ion temperature, and an anticorrelation of apparent electron and ion temperatures. For all three periods the total scattered power is shown to rise with apparent ion temperature by up to 6 dB more than is expected for an isotropic Maxwellian plasma of constant density and by an even larger factor than that expected for non-thermal plasma. The anomalous increases in power are only observed at the lower altitudes (< 300 km). At greater altitudes the rise in power is roughly consistent with that simulated numerically for homogeneous, anisotropic, non-Maxwellian plasma of constant density, viewed using the U.K.-POLAR aspect angle. The spectra at times of anomalously high power are found to be asymmetric, showing an enhancement near the downward Doppler-shifted ion-acoustic frequency. Although it is not possible to eliminate completely rapid plasma density fluctuations as a cause of these power increases, such effects cannot explain the observed spectra and the correlation of power and apparent ion temperature without an unlikely set of coincidences. The observations are made along a beam direction which is as much as 16.5° from orthogonality with the geomagnetic field. Nevertheless, some form of coherent-like echo contamination of the incoherent scatter spectrum is the most satisfactory explanation of these data.
Resumo:
The question is addressed whether using unbalanced updates in ocean-data assimilation schemes for seasonal forecasting systems can result in a relatively poor simulation of zonal currents. An assimilation scheme, where temperature observations are used for updating only the density field, is compared to a scheme where updates of density field and zonal velocities are related by geostrophic balance. This is done for an equatorial linear shallow-water model. It is found that equatorial zonal velocities can be detoriated if velocity is not updated in the assimilation procedure. Adding balanced updates to the zonal velocity is shown to be a simple remedy for the shallow-water model. Next, optimal interpolation (OI) schemes with balanced updates of the zonal velocity are implemented in two ocean general circulation models. First tests indicate a beneficial impact on equatorial upper-ocean zonal currents.
Resumo:
Researchers analyzing spatiotemporal or panel data, which varies both in location and over time, often find that their data has holes or gaps. This thesis explores alternative methods for filling those gaps and also suggests a set of techniques for evaluating those gap-filling methods to determine which works best.
Resumo:
Jakarta is vulnerable to flooding mainly caused by prolonged and heavy rainfall and thus a robust hydrological modeling is called for. A good quality of spatial precipitation data is therefore desired so that a good hydrological model could be achieved. Two types of rainfall sources are available: satellite and gauge station observations. At-site rainfall is considered to be a reliable and accurate source of rainfall. However, the limited number of stations makes the spatial interpolation not very much appealing. On the other hand, the gridded rainfall nowadays has high spatial resolution and improved accuracy, but still, relatively less accurate than its counterpart. To achieve a better precipitation data set, the study proposes cokriging method, a blending algorithm, to yield the blended satellite-gauge gridded rainfall at approximately 10-km resolution. The Global Satellite Mapping of Precipitation (GSMaP, 0.1⁰×0.1⁰) and daily rainfall observations from gauge stations are used. The blended product is compared with satellite data by cross-validation method. The newly-yield blended product is then utilized to re-calibrate the hydrological model. Several scenarios are simulated by the hydrological models calibrated by gauge observations alone and blended product. The performance of two calibrated hydrological models is then assessed and compared based on simulated and observed runoff.
Resumo:
Este trabalho explora um importante conceito desenvolvido por Breeden & Litzenberger para extrair informações contidas nas opções de juros no mercado brasileiro (Opção Sobre IDI), no âmbito da Bolsa de Valores, Mercadorias e Futuros de São Paulo (BM&FBOVESPA) dias antes e após a decisão do COPOM sobre a taxa Selic. O método consiste em determinar a distribuição de probabilidade através dos preços das opções sobre IDI, após o cálculo da superfície de volatilidade implícita, utilizando duas técnicas difundidas no mercado: Interpolação Cúbica (Spline Cubic) e Modelo de Black (1976). Serão analisados os quatro primeiros momentos da distribuição: valor esperado, variância, assimetria e curtose, assim como suas respectivas variações.
Resumo:
The DO experiment at Fermilab's Tevatron will record several petabytes of data over the next five years in pursuing the goals of understanding nature and searching for the origin of mass. Computing resources required to analyze these data far exceed capabilities of any one institution. Moreover, the widely scattered geographical distribution of DO collaborators poses further serious difficulties for optimal use of human and computing resources. These difficulties will exacerbate in future high energy physics experiments, like the LHC. The computing grid has long been recognized as a solution to these problems. This technology is being made a more immediate reality to end users in DO by developing a grid in the DO Southern Analysis Region (DOSAR), DOSAR-Grid, using a available resources within it and a home-grown local task manager, McFarm. We will present the architecture in which the DOSAR-Grid is implemented, the use of technology and the functionality of the grid, and the experience from operating the grid in simulation, reprocessing and data analyses for a currently running HEP experiment.
Resumo:
We outline a method for registration of images of cross sections using the concepts of The Generalized Hough Transform (GHT). The approach may be useful in situations where automation should be a concern. To overcome known problems of noise of traditional GHT we have implemented a slight modified version of the basic algorithm. The modification consists of eliminating points of no interest in the process before the application of the accumulation step of the algorithm. This procedure minimizes the amount of accumulation points while reducing the probability of appearing of spurious peaks. Also, we apply image warping techniques to interpolate images among cross sections. This is needed where the distance of samples between sections is too large. Then it is suggested that the step of registration with GHT can help the interpolation automation by simplifying the correspondence between points of images. Some results are shown.
Resumo:
Traditional methods of submerged aquatic vegetation (SAV) survey last long and then, they are high cost. Optical remote sensing is an alternative, but it has some limitations in the aquatic environment. The use of echosounder techniques is efficient to detect submerged targets. Therefore, the aim of this study is to evaluate different kinds of interpolation approach applied on SAV sample data collected by echosounder. This study case was performed in a region of Uberaba River - Brazil. The interpolation methods evaluated in this work follow: Nearest Neighbor, Weighted Average, Triangular Irregular Network (TIN) and ordinary kriging. Better results were carried out with kriging interpolation. Thus, it is recommend the use of geostatistics for spatial inference of SAV from sample data surveyed with echosounder techniques. © 2012 IEEE.
Resumo:
O uso da técnica da camada equivalente na interpolação de dados de campo potencial permite levar em consideração que a anomalia, gravimétrica ou magnética, a ser interpolada é uma função harmônica. Entretanto, esta técnica tem aplicação computacional restrita aos levantamentos com pequeno número de dados, uma vez que ela exige a solução de um problema de mínimos quadrados com ordem igual a este número. Para viabilizar a aplicação da técnica da camada equivalente aos levantamentos com grande número de dados, nós desenvolvemos o conceito de observações equivalentes e o método EGTG, que, respectivamente, diminui a demanda em memória do computador e otimiza as avaliações dos produtos internos inerentes à solução dos problemas de mínimos quadrados. Basicamente, o conceito de observações equivalentes consiste em selecionar algumas observações, entre todas as observações originais, tais que o ajuste por mínimos quadrados, que ajusta as observações selecionadas, ajusta automaticamente (dentro de um critério de tolerância pré-estabelecido) todas as demais que não foram escolhidas. As observações selecionadas são denominadas observações equivalentes e as restantes são denominadas observações redundantes. Isto corresponde a partir o sistema linear original em dois sistemas lineares com ordens menores. O primeiro com apenas as observações equivalentes e o segundo apenas com as observações redundantes, de tal forma que a solução de mínimos quadrados, obtida a partir do primeiro sistema linear, é também a solução do segundo sistema. Este procedimento possibilita ajustar todos os dados amostrados usando apenas as observações equivalentes (e não todas as observações originais) o que reduz a quantidade de operações e a utilização de memória pelo computador. O método EGTG consiste, primeiramente, em identificar o produto interno como sendo uma integração discreta de uma integral analítica conhecida e, em seguida, em substituir a integração discreta pela avaliação do resultado da integral analítica. Este método deve ser aplicado quando a avaliação da integral analítica exigir menor quantidade de cálculos do que a exigida para computar a avaliação da integral discreta. Para determinar as observações equivalentes, nós desenvolvemos dois algoritmos iterativos denominados DOE e DOEg. O primeiro algoritmo identifica as observações equivalentes do sistema linear como um todo, enquanto que o segundo as identifica em subsistemas disjuntos do sistema linear original. Cada iteração do algoritmo DOEg consiste de uma aplicação do algoritmo DOE em uma partição do sistema linear original. Na interpolação, o algoritmo DOE fornece uma superfície interpoladora que ajusta todos os dados permitindo a interpolação na forma global. O algoritmo DOEg, por outro lado, otimiza a interpolação na forma local uma vez que ele emprega somente as observações equivalentes, em contraste com os algoritmos existentes para a interpolação local que empregam todas as observações. Os métodos de interpolação utilizando a técnica da camada equivalente e o método da mínima curvatura foram comparados quanto às suas capacidades de recuperar os valores verdadeiros da anomalia durante o processo de interpolação. Os testes utilizaram dados sintéticos (produzidos por modelos de fontes prismáticas) a partir dos quais os valores interpolados sobre a malha regular foram obtidos. Estes valores interpolados foram comparados com os valores teóricos, calculados a partir do modelo de fontes sobre a mesma malha, permitindo avaliar a eficiência do método de interpolação em recuperar os verdadeiros valores da anomalia. Em todos os testes realizados o método da camada equivalente recuperou mais fielmente o valor verdadeiro da anomalia do que o método da mínima curvatura. Particularmente em situações de sub-amostragem, o método da mínima curvatura se mostrou incapaz de recuperar o valor verdadeiro da anomalia nos lugares em que ela apresentou curvaturas mais pronunciadas. Para dados adquiridos em níveis diferentes o método da mínima curvatura apresentou o seu pior desempenho, ao contrário do método da camada equivalente que realizou, simultaneamente, a interpolação e o nivelamento. Utilizando o algoritmo DOE foi possível aplicar a técnica da camada equivalente na interpolação (na forma global) dos 3137 dados de anomalia ar-livre de parte do levantamento marinho Equant-2 e 4941 dados de anomalia magnética de campo total de parte do levantamento aeromagnético Carauari-Norte. Os números de observações equivalentes identificados em cada caso foram, respectivamente, iguais a 294 e 299. Utilizando o algoritmo DOEg nós otimizamos a interpolação (na forma local) da totalidade dos dados de ambos os levantamentos citados. Todas as interpolações realizadas não seriam possíveis sem a aplicação do conceito de observações equivalentes. A proporção entre o tempo de CPU (rodando os programas no mesmo espaço de memória) gasto pelo método da mínima curvatura e pela camada equivalente (interpolação global) foi de 1:31. Esta razão para a interpolação local foi praticamente de 1:1.