63 resultados para salinization
Resumo:
According to various studies, the effects of climate change will be a danger to ecosystems and the population, especially in coastal areas, increasing the risk of floods. Authorities are taking action to prevent future disasters using traditional engineering solutions. These solutions can have high environmental and economic costs, fixing the coastline, increasing the salinization of aquifers, and can be subject to failure mechanisms. For this reason, studies were made to use natural engineering solutions for coastal protection, instead of traditional solutions, to achieve the UN SDGs. Coastal ecosystems have the natural ability to repair and restore themselves, increasing soil elevation, and attenuating waves. One of these solutions is the Double Dyke System, consisting of creating a salt marsh between the first dyke and a second inland. The goal is to protect the coasts and to restore ecosystems. The purpose of this study is to compare the costs of natural engineering solutions with traditional ones. It is assumed that these solutions may be more effective and less expensive in the long run. For this evaluation, a suitability analysis of the polders in the Dutch Zeeland region to assess the costs and benefits under different SLR scenarios was made. A saline intrusion model was also created to analyze the effects of a salt marsh on the aquifers. From the analyzes conducted, the implementation of the DDS turns out to be the cheapest coastal defense system in all SLR scenarios. The presence of a salt marsh could also have a positive impact on the prevention of saline intrusion in the various scenarios considered. The DDS could have a positive economic and environmental impact in the long term, reducing the investment costs for coastal defense and bringing important benefits for the protection of man and nature. Despite the results, more studies are needed on the efficiency of this defense system and on the economic evaluation of non-marketable ecosystem services.
Resumo:
Due to the accelerating processes of soil salinization and shortage of fresh water, the practice of saline agriculture is gaining momentum in many areas of the world. However, there are some concerns that using saline water for irrigation may be non-environmentally sustainable, with potential to cause irreversible soil degradation. In addition, there is a lack of information on the morphological, physiological, and biochemical changes that can occur in plants when irrigated with saline water. In light of the above, the major aim of this work was to investigate the effects of a range of water salinity levels and irrigation regimes on the performances of salt tolerant species promising as future crop plants for saline agriculture. The following objectives were addressed: To determine the effects of different water regimes (leaching irrigation vs. no leaching irrigation) with water at increasing salinity concentrations on the growth, ion accumulation and water relations of Sorghum bicolor plants grown under saline soil conditions. To describe the germination response of Salicornia europaea seeds across a wide range of water salinity levels through six reliable indices for screening salinity tolerance at the seed germination stage. To explore the different physiological responses of six wild halophytes commonly found in the Mediterranean area (Artemisia absinthium, Artemisia vulgaris, Atriplex halimus, Chenopodium album, Salsola komarovii, and Sanguisorba minor), and rank their tolerance after exposure to growing levels of water salinity. To identify the main adaptation mechanisms that distinguish C3 from C4 halophytes when exposed to increasing salinity in the growth media, through a comparative study between the C3 species Atriplex hortensis and the C4 species Atriplex halimus. To identify the main adaptation mechanisms that distinguish annual from perennial halophytes when exposed to severe conditions of salinity and drought, through a comparative analysis between two annual Salicornia spp. and the perennial Sarcocornia fruticosa.
Resumo:
This work, in collaboration with the Romagna Reclamation Consortium, has the aim of studying the heavy metals concentration distribution in the drainage canals of the Ravenna coastal basins, Italy. Particular attention was given to the area of the V Fosso Ghiaia and VI Bevanella basins, where water and sediment samples were collected in the field and integrated with existing databases. The hydrological regime is controlled and managed by the Consortium, which has divided the territory into several mechanical drainage basins. XRF was performed on 21 sediment samples and pH, EC, T°, Fe2+ and Fetot were measured on 15 water samples by probes and spectrophotometer, respectively. Heavy metals concentrations exceeding legal limits of the D.LGS n ° 152/2006 were found for As, Co, Cr, Pb and Zn. These results were then integrated with canal sediment analyses provided by the Consortium to perform a Principal Component Analysis. PCA results show that the main variable affecting heavy metals distribution is the use of fertilizers, followed by distance from sea, and altimetry, which are directly linked to salinity. Heavy metals concentrations increase with increasing use of fertilizers, which are mainly due to the widespread agricultural practices and industrial land use in the area. High heavy metals concentrations are also found in the canals interested by higher salinity (especially Pinetale Ramazzotti). In fact, the area is affected by salinization caused by a water table below sea level and upward seepage of salty oxygen-poor saline water from the bottom of the aquifer. According to the literature, iron and manganese oxides were found to be an important factor in controlling the heavy metals distribution.