913 resultados para runoff-rainfall erosivity parameter


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urbanisation significantly changes the characteristics of a catchment as natural areas are transformed to impervious surfaces such as roads, roofs and parking lots. The increased fraction of impervious surfaces leads to changes to the stormwater runoff characteristics, whilst a variety of anthropogenic activities common to urban areas generate a range of pollutants such as nutrients, solids and organic matter. These pollutants accumulate on catchment surfaces and are removed and trans- ported by stormwater runoff and thereby contribute pollutant loads to receiving waters. In summary, urbanisation influences the stormwater characteristics of a catchment, including hydrology and water quality. Due to the growing recognition that stormwater pollution is a significant environmental problem, the implementation of mitigation strategies to improve the quality of stormwater runoff is becoming increasingly common in urban areas. A scientifically robust stormwater quality treatment strategy is an essential requirement for effective urban stormwater management. The efficient design of treatment systems is closely dependent on the state of knowledge in relation to the primary factors influencing stormwater quality. In this regard, stormwater modelling outcomes provide designers with important guidance and datasets which significantly underpin the design of effective stormwater treatment systems. Therefore, the accuracy of modelling approaches and the reliability modelling outcomes are of particular concern. This book discusses the inherent complexity and key characteristics in the areas of urban hydrology and stormwater quality, based on the influence exerted by a range of rainfall and catchment characteristics. A comprehensive field sampling and testing programme in relation to pollutant build-up, an urban catchment monitoring programme in relation to stormwater quality and the outcomes from advanced statistical analyses provided the platform for the knowledge creation. Two case studies and two real-world applications are discussed to illustrate the translation of the knowledge created to practical use in relation to the role of rainfall and catchment characteristics on urban stormwater quality. An innovative rainfall classification based on stormwater quality was developed to support the effective and scientifically robust design of stormwater treatment systems. Underpinned by the rainfall classification methodology, a reliable approach for design rainfall selection is proposed in order to optimise stormwater treatment based on both, stormwater quality and quantity. This is a paradigm shift from the common approach where stormwater treatment systems are designed based solely on stormwater quantity data. Additionally, how pollutant build-up and stormwater runoff quality vary with a range of catchment characteristics was also investigated. Based on the study out- comes, it can be concluded that the use of only a limited number of catchment parameters such as land use and impervious surface percentage, as it is the case in current modelling approaches, could result in appreciable error in water quality estimation. Influential factors which should be incorporated into modelling in relation to catchment characteristics, should also include urban form and impervious surface area distribution. The knowledge created through the research investigations discussed in this monograph is expected to make a significant contribution to engineering practice such as hydrologic and stormwater quality modelling, stormwater treatment design and urban planning, as the study outcomes provide practical approaches and recommendations for urban stormwater quality enhancement. Furthermore, this monograph also demonstrates how fundamental knowledge of stormwater quality processes can be translated to provide guidance on engineering practice, the comprehensive application of multivariate data analyses techniques and a paradigm on integrative use of computer models and mathematical models to derive practical outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multifractal properties of daily rainfall time series at the stations in Pearl River basin of China over periods of up to 45 years are examined using the universal multifractal approach based on the multiplicative cascade model and the multifractal detrended fluctuation analysis (MF-DFA). The results from these two kinds of multifractal analyses show that the daily rainfall time series in this basin have multifractal behavior in two different time scale ranges. It is found that the empirical multifractal moment function K(q)K(q) of the daily rainfall time series can be fitted very well by the universal multifractal model (UMM). The estimated values of the conservation parameter HH from UMM for these daily rainfall data are close to zero indicating that they correspond to conserved fields. After removing the seasonal trend in the rainfall data, the estimated values of the exponent h(2)h(2) from MF-DFA indicate that the daily rainfall time series in Pearl River basin exhibit no long-term correlations. It is also found that K(2)K(2) and elevation series are negatively correlated. It shows a relationship between topography and rainfall variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we investigated the impact of rainfall on runoff, soil erosion and consequently on the discharge of radioactive cesium in agricultural fields in Fukushima prefecture using a rainfall simulator. Simulated heavy rainfalls (50 mm h-1) generated significant runoff and soil erosion. The average concentration of radioactive cesium (the sum of 134Cs and 137Cs) in the runoff sediments was [similar]3500 Bq kg-1 dry soil, more than double the concentrations measured in the field soils which should be considered in studies using the 137Cs loss to estimate long-term soil erosion. However, the estimated mass of cesium discharged through one runoff event was less than 2% of the cesium inventory in the field. This suggested that cesium discharge via soil erosion is not a significant factor in reducing the radioactivity of contaminated soils in Fukushima prefecture. However, the eroded sediment carrying radioactive cesium will deposit into the river systems and potentially pose a radioactivity risk for aquatic living organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainty assessments of herbicide losses from rice paddies in Japan associated with local meteorological conditions and water management practices were performed using a pesticide fate and transport model, PCPF-1, under the Monte Carlo (MC) simulation scheme. First, MC simulations were conducted for five different cities with a prescribed water management scenario and a 10-year meteorological dataset of each city. The effectiveness of water management was observed regarding the reduction of pesticide runoff. However, a greater potential of pesticide runoff remained in Western Japan. Secondly, an extended analysis was attempted to evaluate the effects of local water management and meteorological conditions between the Chikugo River basin and the Sakura River basin using uncertainty inputs processed from observed water management data. The results showed that because of more severe rainfall events, significant pesticide runoff occurred in the Chikugo River basin even when appropriate irrigation practices were implemented. © Pesticide Science Society of Japan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments were carried out to verify the effectiveness of the excess water storage depth (EWSD) in reducing runoff losses of simetryn and thiobencarb from paddy fields upon appreciable rainfall events. A paddy plot having an EWSD of 2 cm was effective in controlling runoff with the herbicide losses of less than 1% of the applied herbicides. Meanwhile, a plot with 0-cm EWSD lost 18.1 and 3.7% of the applied mass of simetryn and thiobencarb, respectively. Therefore, an appropriate EWSD is essential during the recommended 7-day water holding period in order to completely hold the water inside the field in case of rainfall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Monitoring studies revealed high concentrations of pesticides in the drainage canal of paddy fields. It is important to have a way to predict these concentrations in different management scenarios as an assessment tool. A simulation model for predicting the pesticide concentration in a paddy block (PCPF-B) was evaluated and then used to assess the effect of water management practices for controlling pesticide runoff from paddy fields. RESULTS: The PCPF-B model achieved an acceptable performance. The model was applied to a constrained probabilistic approach using the Monte Carlo technique to evaluate the best management practices for reducing runoff of pretilachlor into the canal. The probabilistic model predictions using actual data of pesticide use and hydrological data in the canal showed that the water holding period (WHP) and the excess water storage depth (EWSD) effectively reduced the loss and concentration of pretilachlor from paddy fields to the drainage canal. The WHP also reduced the timespan of pesticide exposure in the drainage canal. CONCLUSIONS: It is recommended that: (1) the WHP be applied for as long as possible, but for at least 7 days, depending on the pesticide and field conditions; (2) an EWSD greater than 2 cm be maintained to store substantial rainfall in order to prevent paddy runoff, especially during the WHP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Runoff and sediment loss from forest roads were monitored for a two-year period in a Pinus plantation in southeast Queensland. Two classes of road were investigated: a gravelled road, which is used as a primary daily haulage route for the logging area, and an ungravelled road, which provides the main access route for individual logging compartments and is intensively used as a haulage route only during the harvest of these areas (approximately every 30 years). Both roads were subjected to routine traffic loads and maintenance during the study. Surface runoff in response to natural rainfall was measured and samples taken for the determination of sediment and nutrient (total nitrogen, total phosphorus, dissolved organic carbon and total iron) loads from each road. Results revealed that the mean runoff coefficient (runoff depth/rainfall depth) was consistently higher from the gravelled road plot with 0.57, as compared to the ungravelled road with 0.38. Total sediment loss over the two-year period was greatest from the gravelled road plot at 5.7 t km−1 compared to the ungravelled road plot with 3.9 t km−1. Suspended solids contributed 86% of the total sediment loss from the gravelled road, and 72% from the ungravelled road over the two years. Nitrogen loads from the two roads were both relatively constant throughout the study, and averaged 5.2 and 2.9 kg km−1 from the gravelled and ungravelled road, respectively. Mean annual phosphorus loads were 0.6 kg km−1 from the gravelled road and 0.2 kg km−1 from the ungravelled road. Organic carbon and total iron loads increased in the second year of the study, which was a much wetter year, and are thought to reflect the breakdown of organic matter in roadside drains and increased sediment generation, respectively. When road and drain maintenance (grading) was performed runoff and sediment loss were increased from both road types. Additionally, the breakdown of the gravel road base due to high traffic intensity during wet conditions resulted in the formation of deep (10 cm) ruts which increased erosion. The Water Erosion Prediction Project (WEPP):Road model was used to compare predicted to observed runoff and sediment loss from the two road classes investigated. For individual rainfall events, WEPP:Road predicted output showed strong agreement with observed values of runoff and sediment loss. WEPP:Road predictions for annual sediment loss from the entire forestry road network in the study area also showed reasonable agreement with the extrapolated observed values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rainfall simulation experiments were carried out to measure runoff and soil water fluxes of suspended solids, total nitrogen, total phosphorus, dissolved organic carbon and total iron from sites in Pinus plantations on the coastal lowlands of south-eastern Queensland subjected to various operations (treatments). The operations investigated were cultivated and nil-cultivated site preparation, fertilised site preparation, clearfall harvesting and prescribed burning; these treatments were compared with an 8-y-old established plantation. Flow-weighted mean concentrations of total nitrogen and total phosphorus in surface runoff from the cultivated and nil-cultivated site-preparation, clearfall harvest, prescribed burning and 8-y-old established plantation treatments were very similar. However, both the soil water and the runoff from the fertilised site preparation treatment contained more nitrogen (N) and phosphorus (P) than the other treatments - with 3.10 mg N L-1 and 4.32 mg P L-1 (4 and 20 times more) in the runoff. Dissolved organic carbon concentrations in runoff from the nil-cultivated site-preparation and prescribed burn treatments were elevated. Iron concentrations were highest in runoff from the nil-cultivated site-preparation and 8-y-old established plantation treatments. Concentrations of suspended solids in runoff were higher from cultivated site preparation and prescribed burn treatments, and reflect the great disturbance of surface soil at these sites. The concentrations of all analytes were highest in initial runoff from plots, and generally decreased with time. Total nitrogen (mean 7.28, range 0.11-13.27 mg L-1) and total phosphorus (mean 11.60, range 0.06-83.99 mg L-1) concentrations in soil water were between 2 and 10 times greater than in surface runoff, which highlights the potential for nutrient fluxes in interflow (i.e. in the soil above the water table) through the general plantation area. Implications in regard to forest management are discussed, along with results of larger catchment-scale studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the influence of rainfall patterns on the water-use efficiency of wheat in a transect between Horsham (36°S) and Emerald (23°S) in eastern Australia. Water-use efficiency was defined in terms of biomass and transpiration, WUEB/T, and grain yield and evapotranspiration, WUEY/ET. Our working hypothesis is that latitudinal trends in WUEY/ET of water-limited crops are the complex result of southward increasing WUEB/T and soil evaporation, and season-dependent trends in harvest index. Our approach included: (a) analysis of long-term records to establish latitudinal gradients of amount, seasonality, and size-structure of rainfall; and (b) modelling wheat development, growth, yield, water budget components, and derived variables including WUEB/T and WUEY/ET. Annual median rainfall declined from around 600 mm in northern locations to 380 mm in the south. Median seasonal rain (from sowing to harvest) doubled between Emerald and Horsham, whereas median off-season rainfall (harvest to sowing) ranged from 460 mm at Emerald to 156 mm at Horsham. The contribution of small events (≤ 5 mm) to seasonal rainfall was negligible at Emerald (median 15 mm) and substantial at Horsham (105 mm). Power law coefficients (τ), i.e. the slopes of the regression between size and number of events in a log-log scale, captured the latitudinal gradient characterised by an increasing dominance of small events from north to south during the growing season. Median modelled WUEB/T increased from 46 kg/ha.mm at Emerald to 73 kg/ha.mm at Horsham, in response to decreasing atmospheric demand. Median modelled soil evaporation during the growing season increased from 70 mm at Emerald to 172 mm at Horsham. This was explained by the size-structure of rainfall characterised with parameter τ, rather than by the total amount of rainfall. Median modelled harvest index ranged from 0.25 to 0.34 across locations, and had a season-dependent latitudinal pattern, i.e. it was greater in northern locations in dry seasons in association with wetter soil profiles at sowing. There was a season-dependent latitudinal pattern in modelled WUEY/ET. In drier seasons, high soil evaporation driven by a very strong dominance of small events, and lower harvest index override the putative advantage of low atmospheric demand and associated higher WUEB/T in southern locations, hence the significant southwards decrease in WUEY/ET. In wetter seasons, when large events contribute a significant proportion of seasonal rain, higher WUEB/T in southern locations may translate into high WUEY/ET. Linear boundary functions (French-Schultz type models) accounting for latitudinal gradients in its parameters, slope, and x-intercept, were fitted to scatter-plots of modelled yield v. evapotranspiration. The x-intercept of the model is re-interpreted in terms of rainfall size structure, and the slope or efficiency multiplier is described in terms of the radiation, temperature, and air humidity properties of the environment. Implications for crop management and breeding are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface losses of nitrogen from horticulture farms in coastal Queensland, Australia, may have the potential to eutrophy sensitive coastal marine habitats nearby. A case-study of the potential extent of such losses was investigated in a coastal macadamia plantation. Nitrogen losses were quantified in 5 consecutive runoff events during the 13-month study. Irrigation did not contribute to surface flows. Runoff was generated by storms at combined intensities and durations that were 20–40 mm/h for >9 min. These intensities and durations were within expected short-term (1 year) and long-term (up to 20 years) frequencies of rainfall in the study area. Surface flow volumes were 5.3 ± 1.1% of the episodic rainfall generated by such storms. Therefore, the largest part of each rainfall event was attributed to infiltration and drainage in this farm soil (Kandosol). The estimated annual loss of total nitrogen in runoff was 0.26 kg N/ha.year, representing a minimal loading of nitrogen in surface runoff when compared to other studies. The weighted average concentrations of total sediment nitrogen (TSN) and total dissolved nitrogen (TDN) generated in the farm runoff were 2.81 ± 0.77% N and 1.11 ± 0.27 mg N/L, respectively. These concentrations were considerably greater than ambient levels in an adjoining catchment waterway. Concentrations of TSN and TDN in the waterway were 0.11 ± 0.02% N and 0.50 ± 0.09 mg N/L, respectively. The steep concentration gradient of TSN and TDN between the farm runoff and the waterway demonstrated the occurrence of nutrient loading from the farming landscapes to the waterway. The TDN levels in the stream exceeded the current specified threshold of 0.2–0.3 mg N/L for eutrophication of such a waterway. Therefore, while the estimate of annual loading of N from runoff losses was comparatively low, it was evident that the stream catchment and associated agricultural land uses were already characterised by significant nitrogen loadings that pose eutrophication risks. The reported levels of nitrogen and the proximity of such waterways (8 km) to the coastline may have also have implications for the nearshore (oligotrophic) marine environment during periods of turbulent flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Runoff, soil loss, and nutrient loss were assessed on a Red Ferrosol in tropical Australia over 3 years. The experiment was conducted using bounded, 100-m(2) field plots cropped to peanuts, maize, or grass. A bare plot, without cover or crop, was also instigated as an extreme treatment. Results showed the importance of cover in reducing runoff, soil loss, and nutrient loss from these soils. Runoff ranged from 13% of incident rainfall for the conventional cultivation to 29% under bare conditions during the highest rainfall year, and was well correlated with event rainfall and rainfall energy. Soil loss ranged from 30 t/ha. year under bare conditions to <6 t/ha. year under cropping. Nutrient losses of 35 kg N and 35 kg P/ha. year under bare conditions and 17 kg N and 11 kg P/ha. year under cropping were measured. Soil carbon analyses showed a relationship with treatment runoff, suggesting that soil properties influenced the rainfall runoff response. The cropping systems model PERFECT was calibrated using runoff, soil loss, and soil water data. Runoff and soil loss showed good agreement with observed data in the calibration, and soil water and yield had reasonable agreement. Longterm runs using historical weather data showed the episodic nature of runoff and soil loss events in this region and emphasise the need to manage land using protective measures such as conservation cropping practices. Farmers involved in related, action-learning activities wished to incorporate conservation cropping findings into their systems but also needed clear production benefits to hasten practice change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The off-site transport of agricultural chemicals, such as herbicides, into freshwater and marine ecosystems is a world-wide concern. The adoption of farm management practices that minimise herbicide transport in rainfall-runoff is a priority for the Australian sugarcane industry, particularly in the coastal catchments draining into the World Heritage listed Great Barrier Reef (GBR) lagoon. In this study, residual herbicide runoff and infiltration were measured using a rainfall simulator in a replicated trial on a brown Chromosol with 90–100% cane trash blanket cover in the Mackay Whitsunday region, Queensland. Management treatments included conventional 1.5 m spaced sugarcane beds with a single row of sugarcane (CONV) and 2 m spaced, controlled traffic sugarcane beds with dual sugarcane rows (0.8 m apart) (2mCT). The aim was to simulate the first rainfall event after the application of the photosynthesis inhibiting (PSII) herbicides ametryn, atrazine, diuron and hexazinone, by broadcast (100% coverage, on bed and furrow) and banding (50–60% coverage, on bed only) methods. These events included heavy rainfall 1 day after herbicide application, considered a worst case scenario, or rainfall 21 days after application. The 2mCT rows had significantly (P < 0.05) less runoff (38%) and lower peak runoff rates (43%) than CONV rows for a rainfall average of 93 mm at 100 mm h−1 (1:20 yr Average Return Interval). Additionally, final infiltration rates were higher in 2mCT rows than CONV rows, with 72 and 52 mm h−1 respectively. This resulted in load reductions of 60, 55, 47, and 48% for ametryn, atrazine, diuron and hexazinone from 2mCT rows, respectively. Herbicide losses in runoff were also reduced by 32–42% when applications were banded rather than broadcast. When rainfall was experienced 1 day after application, a large percentage of herbicides were washed off the cane trash. However, by day 21, concentrations of herbicide residues on cane trash were lower and more resistant to washoff, resulting in lower losses in runoff. Consequently, ametryn and atrazine event mean concentrations in runoff were approximately 8 fold lower at day 21 compared with day 1, whilst diuron and hexazinone were only 1.6–1.9 fold lower, suggesting longer persistence of these chemicals. Runoff collected at the end of the paddock in natural rainfall events indicated consistent though smaller treatment differences to the rainfall simulation study. Overall, it was the combination of early application, banding and controlled traffic that was most effective in reducing herbicide losses in runoff. Crown copyright © 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precipitation-induced runoff and leaching from milled peat mining mires by peat types: a comparative method for estimating the loading of water bodies during peat production. This research project in environmental geology has arisen out of an observed need to be able to predict more accurately the loading of watercourses with detrimental organic substances and nutrients from already existing and planned peat production areas, since the authorities capacity for insisting on such predictions covering the whole duration of peat production in connection with evaluations of environmental impact is at present highly limited. National and international decisions regarding monitoring of the condition of watercourses and their improvement and restoration require more sophisticated evaluation methods in order to be able to forecast watercourse loading and its environmental impacts at the stage of land-use planning and preparations for peat production.The present project thus set out from the premise that it would be possible on the basis of existing mire and peat data properties to construct estimates for the typical loading from production mires over the whole duration of their exploitation. Finland has some 10 million hectares of peatland, accounting for almost a third of its total area. Macroclimatic conditions have varied in the course of the Holocene growth and development of this peatland, and with them the habitats of the peat-forming plants. Temperatures and moisture conditions have played a significant role in determining the dominant species of mire plants growing there at any particular time, the resulting mire types and the accumulation and deposition of plant remains to form the peat. The above climatic, environmental and mire development factors, together with ditching, have contributed, and continue to contribute, to the existence of peat horizons that differ in their physical and chemical properties, leading to differences in material transport between peatlands in a natural state and mires that have been ditched or prepared for forestry and peat production. Watercourse loading from the ditching of mires or their use for peat production can have detrimental effects on river and lake environments and their recreational use, especially where oxygen-consuming organic solids and soluble organic substances and nutrients are concerned. It has not previously been possible, however, to estimate in advance the watercourse loading likely to arise from ditching and peat production on the basis of the characteristics of the peat in a mire, although earlier observations have indicated that watercourse loading from peat production can vary greatly and it has been suggested that differences in peat properties may be of significance in this. Sprinkling is used here in combination with simulations of conditions in a milled peat production area to determine the influence of the physical and chemical properties of milled peats in production mires on surface runoff into the drainage ditches and the concentrations of material in the runoff water. Sprinkling and extraction experiments were carried out on 25 samples of milled Carex (C) and Sphagnum (S) peat of humification grades H 2.5 8.5 with moisture content in the range 23.4 89% on commencement of the first sprinkling, which was followed by a second sprinkling 24 hours later. The water retention capacity of the peat was best, and surface runoff lowest, with Sphagnum and Carex peat samples of humification grades H 2.5 6 in the moisture content class 56 75%. On account of the hydrophobicity of dry peat, runoff increased in a fairly regular manner with drying of the sample from 55% to 24 30%. Runoff from the samples with an original moisture content over 55% increased by 63% in the second round of sprinkling relative to the first, as they had practically reached saturation point on the first occasion, while those with an original moisture content below 55% retained their high runoff in the second round, due to continued hydrophobicity. The well-humified samples (H 6.5 8.5) with a moisture content over 80% showed a low water retention capacity and high runoff in both rounds of sprinkling. Loading of the runoff water with suspended solids, total phosphorus and total nitrogen, and also the chemical oxygen demand (CODMn O2), varied greatly in the sprinkling experiment, depending on the peat type and degree of humification, but concentrations of the same substances in the two sprinklings were closely or moderately closely correlated and these correlations were significant. The concentrations of suspended solids in the runoff water observed in the simulations of a peat production area and the direct surface runoff from it into the drainage ditch system in response to rain (sprinkling intensity 1.27 mm/min) varied c. 60-fold between the degrees of humification in the case of the Carex peats and c. 150-fold for the Sphagnum peats, while chemical oxygen demand varied c. 30-fold and c. 50-fold, respectively, total phosphorus c. 60-fold and c. 66-fold, total nitrogen c. 65-fold and c. 195-fold and ammonium nitrogen c. 90-fold and c. 30-fold. The increases in concentrations in the runoff water were very closely correlated with increases in humification of the peat. The correlations of the concentrations measured in extraction experiments (48 h) with peat type and degree of humification corresponded to those observed in the sprinkler experiments. The resulting figures for the surface runoff from a peat production area into the drainage ditches simulated by means of sprinkling and material concentrations in the runoff water were combined with statistics on the mean extent of daily rainfall (0 67 mm) during the frost-free period of the year (May October) over an observation period of 30 years to yield typical annual loading figures (kg/ha) for suspended solids (SS), chemical oxygen demand of organic matter (CODmn O2), total phosphorus (tot. P) and total nitrogen (tot. N) entering the ditches with respect to milled Carex (C) and Sphagnum (S) peats of humification grades H 2.5 8.5. In order to calculate the loading of drainage ditches from a milled peat production mire with the aid of these annual comparative values (in kg/ha), information is required on the properties of the intended production mire and its peat. Once data are available on the area of the mire, its peat depth, peat types and their degrees of humification, dry matter content, calorific value and corresponding energy content, it is possible to produce mutually comparable estimates for individual mires with respect to the annual loading of the drainage ditch system and the surrounding watercourse for the whole service life of the production area, the duration of this service life, determinations of energy content and the amount of loading per unit of energy generated (kg/MWh). In the 8 mires in the Köyhäjoki basin, Central Ostrobothnia, taken as an example, the loading of suspended solids (SS) in the drainage ditch networks calculated on the basis of the typical values obtained here and existing mire and peat data and expressed per unit of energy generated varied between the mires and horizons in the range 0.9 16.5 kg/MWh. One of the aims of this work was to develop means of making better use of existing mire and peat data and the results of corings and other field investigations. In this respect combination of the typical loading values (kg/ha) obtained here for S, SC, CS and C peats and the various degrees of humification (H 2.5 8.5) with the above mire and peat data by means of a computer program for the acquisition and handling of such data would enable all the information currently available and that deposited in the system in the future to be used for defining watercourse loading estimates for mires and comparing them with the corresponding estimates of energy content. The intention behind this work has been to respond to the challenge facing the energy generation industry to find larger peat production areas that exert less loading on the environment and to that facing the environmental authorities to improve the means available for estimating watercourse loading from peat production and its environmental impacts in advance. The results conform well to the initial hypothesis and to the goals laid down for the research and should enable watercourse loading from existing and planned peat production to be evaluated better in the future and the resulting impacts to be taken into account when planning land use and energy generation. The advance loading information available in this way would be of value in the selection of individual peat production areas, the planning of their exploitation, the introduction of water protection measures and the planning of loading inspections, in order to achieve controlled peat production that pays due attention to environmental considerations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality is influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigations in four urban residential catchments based at Gold Coast, Australia, and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling results confirmed that high intensity-short duration events produce 58.0% of TS load while they only generated 29.1% of total runoff volume. Additionally, rainfall events smaller than 6-month average recurrence interval (ARI) generates a greater cumulative runoff volume (68.4% of the total annual runoff volume) and TS load (68.6% of the TS load exported) than the rainfall events larger than 6-month ARI. The results suggest that for the study catchments, stormwater treatment design could be based on the rainfall which had a mean value of 31 mm/h average intensity and 0.4 h duration. These outcomes also confirmed that selecting smaller ARI rainfall events with high intensity-short duration as the threshold for treatment system design is the most feasible approach since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of the study is to examine the accuracy of and differences among simulated streamflows driven by rainfall estimates from a network of 22 rain gauges spread over a 2,170 km2 watershed, NEXRAD Stage III radar data, and Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite data. The Gridded Surface Subsurface Hydrologic Analysis (GSSHA), a physically based, distributed parameter, grid-structured, hydrologic model, was used to simulate the June-2002 flooding event in the Upper Guadalupe River watershed in south central Texas. There were significant differences between the rainfall fields estimated by the three types of measurement technologies. These differences resulted in even larger differences in the simulated hydrologic response of the watershed. In general, simulations driven by radar rainfall yielded better results than those driven by satellite or rain-gauge estimates. This study also presents an overview of effects of land cover changes on runoff and stream discharge. The results demonstrate that, for major rainfall events similar to the 2002 event, the effect of urbanization on the watershed in the past two decades would not have made any significant effect on the hydrologic response. The effect of urbanization on the hydrologic response increases as the size of the rainfall event decreases.