979 resultados para regulated Function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nous avons récemment démontré que les espèces réactives oxygénées induisent une augmentation de l’expression des protéines Giα dans les cellules du muscle lisse vasculaire (CMLV) provenant d’aortes de rats spontanément hypertendus (SHR, de l’anglais spontaneously hypertensive rats). La présente étude a pour but d’étudier les effets du peroxyde d’hydrogène (H2O2), un oxydant qui induit le stress oxydatif, sur l’expression de Giα et sur l’activité de l’adénylate cyclase, et d’explorer les voies de signalisation sous-jacentes responsables de cette réponse. Nos résultats montrent que H2O2 induit une augmentation de l’expression des protéines Giα-2 et Giα-3 de manière dose- et temps-dépendante avec une augmentation maximale de 40-50% à 100 µM après 1 heure, sans affecter l’expression de Gsα. L’expression des protéines Giα a été maintenue au niveau normal en presence de AG 1478, AG1295, PD98059 et la wortmannine, des inhibiteurs d’EGF-R (de l’anglais epidermal growth factor receptor), PDGFR-β (de l’anglais platelet-derived growth factor receptor β), de la voie de signalisation ras-ERK1/2 (de l’anglais extracellular regulated kinase1/2), et de la voie de la PI3Kinase-AKT (de l’anglais phosphatidyl inositol-3 kinase), respectivement. En outre, le traitement des CMLV avec H2O2 a induit une augmentation du degré de phosphorylation d’EGF-R, PDGF-R, ERK1/2 et AKT; et cette expression a été maintenue au niveau témoin par leurs inhibiteurs respectifs. Les inhibiteurs d’EGF-R et PDGF-R ont aussi induit une diminution du degré de phosphorylation de ERK1/2, et AKT/PKB. En outre, la transfection des cellules avec le siRNA (de l’anglais, small interfering ribonucleic acid) de EGF-R et PDGFR-β a atténué la surexpression des protéines Giα-2 et Giα-3 induite par le traitement au H2O2. La surexpression des protéines Giα induite par H2O2 a été corrélée avec une augmentation de la fonction de la protéine Giα. L’inhibition de l’activité de l’adénylate cyclase par de faibles concentrations de GTPγS après stimulation par la forskoline a augmenté de 20% dans les cellules traitées au H2O2. En outre, le traitement des CMLV au H2O2 a aussi accru l’inhibition de l’activité de l’adénylate cyclase par les hormones inhibitrices telles que l’angiotensine II, oxotrémorine et C-ANP4-23. D’autre part, la stimulation de l’adénylate cyclase induite par GTPγS, glucagon, isoprotérénol, forskoline, et le fluorure de sodium (NaF) a été atténuée de façon significative dans les cellules traitées au H2O2. Ces résultats suggèrent que H2O2 induit la surexpression des protéines Giα-2 and Giα-3 via la transactivation des récepteurs des facteurs de croissance EGF-R, PDGFR-β et l’activation des voies de signalisation ras-ERK1/2 et PI3K-AKT Mot-cles: Protéines Giα, peroxyde d’hydrogène, stress oxydant, récepteurs des facteurs de croissance, MAP kinases, adénylate cyclase, hypertension

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BRCA1 est un suppresseur de tumeur majeur jouant un rôle dans la transcription, la réparation de l’ADN et le maintien de la stabilité génomique. En effet, des mutations dans le gène BRCA1 augmentent considerablement le risque de cancers du sein et de l’ovaire. BRCA1 a été en majorité caractérisé pour son rôle dans la réparation de l’ADN par la voie de recombinaison homologue (HR) en présence de bris double brins, par example, induits par l’irradiation gamma (IR). Cependant, la fonction de BRCA1 dans d’autres voies de réparation de l’ADN, comme la réparation par excision de nucléotides (NER) ou par excision de base (BER), demeurent toutefois obscures. Il est donc important de comprendre la régulation de BRCA1 en présence d’agents génotoxiques comme le méthyle méthanesulfonate (MMS) ou l’UV, qui promouvoient le BER et le NER respectivement. Nos observations suggèrent que BRCA1 est dégradée par le protéasome après traitement avec le MMS ou les UV, et non avec l’IR. Par ailleurs, cette dégradation semble compromettre le recrutement de Rad51, suggérant que la voie de HR est inhibée. Nos résultats suggèrent que la HR est inhibée afin d’éviter l’activation simultanée de multiples voies de réparation. Nous avons aussi observé que la dégradation BRCA1 est réversible et que la restauration des niveaux de BRCA1 coïncide avec le recrutement de Rad51 aux sites de dommages. Cela suggère que la HR est réactivée tardivement par les bris double brins générés suite à l’effondrement des fourches de réplication. Ayant observé que BRCA1 est hautement régulé par l’ubiquitination et est ciblé par le protéasome pour dégradation, nous avons émis une hypothèse que BRCA1 est régulé par des déubiquitinases. Cela amène à caractériser plus en profondeur par un criblage en déplétant les déubiquitinases individuellement par RNAi et en observant leur effet sur le recrutement de BRCA1 et des protéines reliées à cette voie. Un criblage préliminaire nous a permi d’identifié candidats potentiels tel que BAP1, CXORF53, DUB3, OTUB1 et USP36.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study describes that acetylcholine through muscarinic Ml and M3 receptors play an important role in the brain function during diabetes as a function of age. Cholinergic activity as indicated by acetylcholine esterase, a marker for cholinergic function, decreased in the brain regions - the cerebral cortex, brainstem and corpus striatum of old rats compared to young rats. in diabetic condition, it was increased in both young and old rats in cerebral cortex, and corpus striatum while in brainstem it was decreased. The functional changes in the muscarinic receptors were studied in the brain regions and it showed that muscarinic M I receptors of old rats were down regulated in cerebral cortex while in corpus striatum and brainstem it was up regulated. Muscarinic M3 receptors of old rats showed no significant change in cerebral cortex while in corpus striatum and brainstem muscarinic receptors were down regulated. During diabetes, muscarinic M I receptors were down regulated in cerebral cortex and brainstem of young rats while in corpus striatum they were up regulated. In old rats, M I receptors were up regulated in cerebral cortex, corpus striatum and in brainstem they were down regulated. Muscarinic M3 receptors were up regulated in cerebral cortex and brainstem of young rats while in corpus striatum they were down regulated. In old rats, muscarinic M l receptors were up regulated in cerebral cortex, corpus striatum and brainstem. In insulin treated diabetic rats the activity of the receptors were reversed to near control. Pancreatic muscarinic M3 receptor activity increased in the pancreas of both young and old rats during diabetes. In vitro studies using carbachol and antagonists for muscarinic Ml and M3 receptor subtypes confirmed the specific receptor mediated neurotransmitter changes during diabetes. Calcium imaging studies revealed muscarinic M I mediated Ca2 + release from the pancreatic islet cells of young and old rats. Electrophysiological studies using EEG recording in young and old rats showed a brain activity difference during diabetes. Long term low dose STH and INS treated rat brain tissues were used for gene expression of muscarinic Ml, M3, glutamate NMDARl, mGlu-5,alpha2A, beta2, GABAAa1 and GABAB, DAD2 and 5-HT 2C receptors to observe the neurotransmitter receptor functional interrelationship for integrating memory, cognition and rejuvenating brain functions in young and old. Studies on neurotransmitter receptor interaction pathways and gene expression regulation by second messengers like IP3 and cGMP in turn will lead to the development of therapeutic agents to manage diabetes and brain activity.From this study it is suggested that functional improvement of muscarinic Ml, M3, glutamate NMDAR1, mGlu-5, alpha2A, beta2, GABAAa1 and GABAB, DAD2 and 5-HT 2C receptors mediated through IP3 and cGMP will lead to therapeutic applications in the management of diabetes. Also, our results from long term low dose STH and INS treatment showed rejuvenation of the brain function which has clinical significance in maintaining healthy period of life as a function of age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The onset of spontaneous seizures triggers a cascade of molecular and cellular events that eventually leads to neuronal injury and cognitive decline. The present study investigated the effect of Withania somnifera (WS) root extract and Withanolide A (WA) in restoring behavioural deficit by inhibiting oxidative stress induced alteration in glutamergic neurotransmission. The subdued performance in behavioural tests shows impaired motor coordination and memory. Histopathological investigations revealed significant neuronal loss in hippocampus of epileptic rats indicating glutamate mediated excitotoxicity. The treatment with WS and WA restored behavioural deficit and ameliorated neuronal loss. An altered redox homeostasis leading to oxidative stress is a hallmark of TLE. The antioxidant potential was afflicted in epileptic rats, evident from altered activity of SOD and CAT, down regulation of SOD and GPX expression and enhanced lipid peroxidation. The antioxidant property of WS and WA restored altered antioxidant capacity. Alteration in GDH activity and down regulation of GLAST expression resulted in enhanced glutamate content in the brain regions. The metabolism of glutamate was altered in the form of down regulated GAD expression. The alteration in synthesis, transport and metabolism resulted in further increase of the glutamate concentration at the synapse leading to glutamate mediated excitotoxicity. The decreased NMDA and AMPA receptor binding and down regulated NMDA R1, NMDA 2B and AMPA (GluR2) mRNA expression indicated altered glutamergic receptor function. The treatment with WS and WA reversed altered glutamergic receptor function, synthesis, transport and metabolism. The enhanced levels of second messenger IP3 responsible for Ca2+ mediated toxicity was reversed after treatment with WS and WA. Neurotoxics concentration of glutamate resulted in up regulation of pro apoptotic factors Bax and Caspase 8 and down regulation of anti apoptotic factor Akt resulting in neuronal death. The treatment with WS and WA resulted in activation of Akt and down regulation of Bax and caspase 8 leading to blocking of apoptotic pathway. The treatment with WS and WA resulted in reduced seizure frequency and amelioration of associated alterations suggesting the therapeutic role of Withania somnifera in temporal lobe epilepsy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With molecular biology methods and bioinformatics, the Argonaute proteins in Dictyostelium discoideum were characterized, and the function of the AgnA protein in RNAi and DNA methylation was investigated, as well as cellular features. Also interaction partners of the PAZ-Piwi domain of AgnA (PAZ-PiwiAgnA) were discovered. The Dictyostelium genome encodes five Argonaute proteins, termed AgnA/B/C/D/E. The expression level of Argonaute proteins was AgnB/D/E > AgnA > AgnC. All these proteins contain the characteristic conserved of PAZ and Piwi domains. Fluorescence microscopy revealed that the overexpressed C-terminal GFP-fusion of PAZ-PiwiAgnA (PPWa-GFP) localized to the cytoplasm. Overexpression of PPWa-GFP leaded to an increased gene silencing efficiency mediated by RNAi but not by antisense RNA. This indicated that PAZ-PiwiAgnA is involved in the RNAi pathway, but not in the antisense pathway. An analysis of protein-protein interactions by a yeast-two-hybrid screen on a cDNA library from vegetatively grown Dictyostelium revealed that several proteins, such as EF2, EF1-I, IfdA, SahA, SamS, RANBP1, UAE1, CapA, and GpdA could interact with PAZ-PiwiAgnA. There was no interaction between PAZ-PiwiAgnA and HP1, HelF and DnmA detected by direct yeast-two-hybrid analysis. The fluorescence microscopy images showed that the overexpressed GFP-SahA or IfdA fusion proteins localized to both cytoplasm and nuclei, while the overexpressed GFP-SamS localized to the cytoplasm. The expression of SamS in AgnA knock down mutants was strongly down regulated on cDNA and mRNA level in, while the expression of SahA was only slightly down regulated. AgnA knock down mutants displayed defects in growth and phagocytosis, which suggested that AgnA affects also cell biological features. The inhibition of DNA methylation on DIRS-1 and Skipper retroelements, as well as the endogenous mvpB and telA gene, observed for the same strains, revealed that AgnA is involved in the DNA methylation pathway. Northern blot analysis showed that Skipper and DIRS-1 were rarely expressed in Ax2, but the expression of Skipper was upregulated in AgnA knock down mutants, while the expression of DIRS-1 was not changed. A knock out of the agnA gene failed even though the homologous recombination of the disruption construct occurred at the correct site, which indicated that there was a duplication of the agnA gene in the genome. The same phenomenon was also observed in ifdA knock out experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mean platelet volume (MPV) and platelet count (PLT) are highly heritable and tightly regulated traits. We performed a genome-wide association study for MPV and identified one SNP, rs342293, as having highly significant and reproducible association with MPV (per-G allele effect 0.016 +/- 0.001 log fL; P < 1.08 x 10(-24)) and PLT (per-G effect -4.55 +/- 0.80 10(9)/L; P < 7.19 x 10(-8)) in 8586 healthy subjects. Whole-genome expression analysis in the 1-MB region showed a significant association with platelet transcript levels for PIK3CG (n = 35; P = .047). The G allele at rs342293 was also associated with decreased binding of annexin V to platelets activated with collagen-related peptide (n = 84; P = .003). The region 7q22.3 identifies the first QTL influencing platelet volume, counts, and function in healthy subjects. Notably, the association signal maps to a chromosome region implicated in myeloid malignancies, indicating this site as an important regulatory site for hematopoiesis. The identification of loci regulating MPV by this and other studies will increase our insight in the processes of megakaryopoiesis and proplatelet formation, and it may aid the identification of genes that are somatically mutated in essential thrombocytosis. (Blood. 2009; 113: 3831-3837)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yncE gene of Escherichia coli encodes a predicted periplasmic protein of unknown function. The gene is de-repressed under iron restriction through the action of the global iron regulator Fur. This suggests a role in iron acquisition, which is supported by the presence of the adjacent yncD gene encoding a potential TonB-dependent outer-membrane transporter. Here, the preliminary crystallographic structure of YncE is reported, revealing that it consists of a seven-bladed beta-propeller which resembles the corresponding domain of the `surface-layer protein' of Methanosarcina mazei. A full structure determination is under way in order to provide insight into the function of this protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrin-linked kinase (ILK) has been implicated in the regulation of a range of fundamental biological processes such as cell survival, growth, differentiation, and adhesion. In platelets ILK associates with beta 1- and beta 3-containing integrins, which are of paramount importance for the function of platelets. Upon stimulation of platelets this association with the integrins is increased and ILK kinase activity is up-regulated, suggesting that ILK may be important for the coordination of platelet responses. In this study a conditional knockout mouse model was developed to examine the role of ILK in platelets. The ILK-deficient mice showed an increased bleeding time and volume, and despite normal ultrastructure the function of ILK-deficient platelets was decreased significantly. This included reduced aggregation, fibrinogen binding, and thrombus formation under arterial flow conditions. Furthermore, although early collagen stimulated signaling such as PLC gamma 2 phosphorylation and calcium mobilization were unaffected in ILK-deficient platelets, a selective defect in alpha-granule, but not dense-granule, secretion was observed. These results indicate that as well as involvement in the control of integrin affinity, ILK is required for alpha-granule secretion and therefore may play a central role in the regulation of platelet function. (Blood. 2008; 112: 4523-4531)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Escherichia coli possesses iron transporters specific for either Fe2+ or Fe3+. Although Fe2+ is far more soluble than Fe3+, it rapidly oxidizes aerobically at pH >= 7. Thus, FeoAB, the major Fe2+ transporter of E. coli, operates anaerobically. However, Fe2+ remains stable aerobically under acidic conditions, although a low-pH Fe2+ importer has not been previously identified. Here we show that ycdNOB (efeUOB) specifies the first such transporter. efeUOB is repressed at high pH by CpxAR, and is Fe2+-Fur repressed. EfeU is homologous to the high-affinity iron permease, Ftr1p, of Saccharomyces cerevisiae and other fungi. EfeO is periplasmic with a cupredoxin N-terminal domain; EfeB is also periplasmic and is haem peroxidase-like. All three Efe proteins are required for Efe function. The efeU gene of E. coli K-12 is cryptic due to a frameshift mutation - repair of the single-base-pair deletion generates a functional EfeUOB system. In contrast, the efeUOB operon of the enterohaemorrhagic strain, O157:1147, lacks any frameshift and is functional. A 'wild-type' K-12 strain bearing a functional EfeUOB displays a major growth advantage under aerobic, low-pH, low-iron conditions when a competing metal is provided. Fe-55 transport assays confirm the ferrous iron specificity of EfeUOB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI–Fc receptor (FcR)-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI–FcR-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. Objective: To investigate the possibility that PECAM-1 regulates the formation of the Gab1–p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. Methods: The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. Results: PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2–p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptor proteins play an important role in signaling pathways by providing a platform on which many other proteins can interact. Malfunction or mislocalization of these proteins may play a role in the development of disease. Lipoma preferred partner (LPP) is a nucleocytoplasmic shuttling adaptor protein. Previous work shows that LPP plays a role in the function of smooth muscle cells and in atherosclerosis. In this study we wanted to determine whether LPP has a role in the myocardium. LPP expression increased by 56% in hearts from pressure overload aortic-banded rats (p < 0.05 n = 4), but not after myocardial infarction, suggesting hemodynamic load regulates its expression. In vitro, LPP expression was 87% higher in cardiac fibroblasts than myocytes (p < 0.05 n = 3). LPP expression was downregulated in the absence of the actin cytoskeleton but not when microtubules were disassembled. We mechanically stretched cardiac fibroblasts using the Flexcell 4000 for 48 h (1 Hz, 5% maximum strain), which decreased total LPP total expression and membrane localization in subcellular fractions (p < 0.05, n = 5). However, L-NAME, an inhibitor of nitric oxide synthase (NOS), significantly upregulated LPP expression. These findings suggest that LPP is regulated by a complex interplay between NO and mechanical cues and may play a role in heart failure induced by increased hemodynamic load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enzymatic activity of peptidases must be tightly regulated to prevent uncontrolled hydrolysis of peptide bonds, which could have devastating effects in biological systems. Peptidases are often generated as inactive propeptidases, secreted with endogenous inhibitors or they are compartmentalized. Propeptidases become active after proteolytic removal of N-terminal activation peptides by other peptidases. Some peptidases only become active towards substrates only at certain pHs, thus confining activity to specific compartments or conditions. This review discusses the different roles proteolysis plays in regulating G protein-coupled receptors (GPCRs). At the cell-surface, certain GPCRs are regulated by the hydrolytic inactivation of bioactive peptides by membrane-anchored peptidases, which prevents signaling. Conversely, cell-surface peptidases can also generate bioactive peptides that directly activate GPCRs. Alternatively, cell-surface peptidases activated by GPCRs, can generate bioactive peptides to cause transactivation of receptor tyrosine kinases, thereby promoting signaling. Certain peptidases can signals directly to cells, by cleaving GPCR to initiate intracellular signaling cascades. Intracellular peptidases also regulate GPCRs; lysosomal peptidases destroy GPCRs in lysosomes to permanently terminate signaling and mediate downregulation; endosomal peptidases cleave internalized peptide agonists to regulate GPCR recycling, resensitization and signaling; and soluble intracellular peptidases also participate in GPCR function by regulating the ubiquitination state of GPCRs, thereby altering GPCR signaling and fate. Although the use of peptidase inhibitors has already brought success in the treatment of diseases such as hypertension, the discovery of new regulatory mechanisms involving proteolysis that control GPCRs may provide additional targets to modulate dysregulated GPCR signaling in disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platelets in the circulation are triggered by vascular damage to activate, aggregate and form a thrombus that prevents excessive blood loss. Platelet activation is stringently regulated by intracellular signalling cascades, which when activated inappropriately lead to myocardial infarction and stroke. Strategies to address platelet dysfunction have included proteomics approaches which have lead to the discovery of a number of novel regulatory proteins of potential therapeutic value. Global analysis of platelet proteomes may enhance the outcome of these studies by arranging this information in a contextual manner that recapitulates established signalling complexes and predicts novel regulatory processes. Platelet signalling networks have already begun to be exploited with interrogation of protein datasets using in silico methodologies that locate functionally feasible protein clusters for subsequent biochemical validation. Characterization of these biological systems through analysis of spatial and temporal organization of component proteins is developing alongside advances in the proteomics field. This focused review highlights advances in platelet proteomics data mining approaches that complement the emerging systems biology field. We have also highlighted nucleated cell types as key examples that can inform platelet research. Therapeutic translation of these modern approaches to understanding platelet regulatory mechanisms will enable the development of novel anti-thrombotic strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Huntingtin (Htt) protein interacts with many transcriptional regulators, with widespread disruption to the transcriptome in Huntington's disease (HD) brought about by altered interactions with the mutant Htt (muHtt) protein. Repressor Element-1 Silencing Transcription Factor (REST) is a repressor whose association with Htt in the cytoplasm is disrupted in HD, leading to increased nuclear REST and concomitant repression of several neuronal-specific genes, including brain-derived neurotrophic factor (Bdnf). Here, we explored a wide set of HD dysregulated genes to identify direct REST targets whose expression is altered in a cellular model of HD but that can be rescued by knock-down of REST activity. We found many direct REST target genes encoding proteins important for nervous system development, including a cohort involved in synaptic transmission, at least two of which can be rescued at the protein level by REST knock-down. We also identified several microRNAs (miRNAs) whose aberrant repression is directly mediated by REST, including miR-137, which has not previously been shown to be a direct REST target in mouse. These data provide evidence of the contribution of inappropriate REST-mediated transcriptional repression to the widespread changes in coding and non-coding gene expression in a cellular model of HD that may affect normal neuronal function and survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell shape, signaling, and integrity depend on cytoskeletal organization. In this study we describe the cytoskeleton as a simple network of filamentary proteins (links) anchored by complex protein structures (nodes). The structure of this network is regulated by a distance-dependent probability of link formation as P = p/d(s), where p regulates the network density and s controls how fast the probability for link formation decays with node distance (d). It was previously shown that the regulation of the link lengths is crucial for the mechanical behavior of the cells. Here we examined the ability of the two-dimensional network to percolate (i.e. to have end-to-end connectivity), and found that the percolation threshold depends strongly on s. The system undergoes a transition around s = 2. The percolation threshold of networks with s < 2 decreases with increasing system size L, while the percolation threshold for networks with s > 2 converges to a finite value. We speculate that s < 2 may represent a condition in which cells can accommodate deformation while still preserving their mechanical integrity. Additionally, we measured the length distribution of F-actin filaments from publicly available images of a variety of cell types. In agreement with model predictions, cells originating from more deformable tissues show longer F-actin cytoskeletal filaments. (C) 2008 Elsevier B.V. All rights reserved.