988 resultados para rectangular region models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part of this research work regards the assessment of the mathematical modelling of reinforced concrete columns confined with carbon fibre (CFRP) sheets under axial loading. The purpose was to evaluate existing analytical models, contribute to possible improvements and choose the best model(s) to be part of a new model for the prediction of the behaviour of confined columns under bending and compression. For circular columns, a wide group of authors have proposed several models specific for FRP-confined concrete. The analysis of some of the existing models was carried out by comparing these with several tested columns. Although several models predict fairly the peak load only few can properly estimate the load-strain and dilation behaviour of the columns. Square columns confined with CFRP show a more complex interpretation of their behaviour. Accordingly, the analysis of two experimental programs was carried out to propose new modelling equations for the whole behaviour of columns. The modelling results show that the analytical curves are in general agreement with the presented experimental curves for a wide range of dimensions. An analysis similar to the one done for circular columns was this turn carried out for square columns. Few models can fairly estimate the whole behaviour of the columns and with less accuracy at all levels when compared with circular columns. The second part of this study includes seven experimental tests carried out on reinforced concrete rectangular columns with rounded corners, different damage condition and with confinement and longitudinal strengthening systems. It was concluded that the use of CFRP confinement is viable and of effective performance enhancement alone and combined with other techniques, maintaining a good ductile behaviour for established threshold displacements. As regards the use of external longitudinal strengthening combined with CFRP confinement, this system is effective for the performance enhancement and viable in terms of execution. The load capacity was increased significantly, preserving also in this case a good ductile behaviour for threshold displacements. As to the numerical nonlinear modelling of the tested columns, the results show a variation of the peak load of 1% to 10% compared with tests results. The good results are partly due to the inclusion of the concrete constitutive model by Mander et al. modified by Faustino, Chastre & Paula taking into account the confinement effect. Despite the reasonable approximation to tests results, the modelling results showed higher unloading, which leads to an overestimate dissipated energy and residualdisplacement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We survey results about exact cylindrically symmetric models of gravitational collapse in General Relativity. We focus on models which result from the matching of two spacetimes having collapsing interiors which develop trapped surfaces and vacuum exteriors containing gravitational waves. We collect some theorems from the literature which help to decide a priori about eventual spacetime matchings. We revise, in more detail, some toy models which include some of the main mathematical and physical issues that arise in this context, and compute the gravitational energy flux through the matching boundary of a particular collapsing region. Along the way, we point out several interesting open problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fracture risk assessment tool (FRAX(®)) has been developed for the identification of individuals with high risk of fracture in whom treatment to prevent fractures would be appropriate. FRAX models are not yet available for all countries or ethnicities, but surrogate models can be used within regions with similar fracture risk. The International Society for Clinical Densitometry (ISCD) and International Osteoporosis Foundation (IOF) are nonprofit multidisciplinary international professional organizations. Their visions are to advance the awareness, education, prevention, and treatment of osteoporosis. In November 2010, the IOF/ISCD FRAX initiative was held in Bucharest, bringing together international experts to review and create evidence-based official positions guiding clinicians for the practical use of FRAX. A consensus meeting of the Asia-Pacific (AP) Panel of the ISCD recently reviewed the most current Official Positions of the Joint Official Positions of ISCD and IOF on FRAX in view of the different population characteristics and health standards in the AP regions. The reviewed position statements included not only the key spectrum of positions but also unique concerns in AP regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large fraction of genome variation between individuals is comprised of submicroscopic copy number variation of genomic DNA segments. We assessed the relative contribution of structural changes and gene dosage alterations on phenotypic outcomes with mouse models of Smith-Magenis and Potocki-Lupski syndromes. We phenotyped mice with 1n (Deletion/+), 2n (+/+), 3n (Duplication/+), and balanced 2n compound heterozygous (Deletion/Duplication) copies of the same region. Parallel to the observations made in humans, such variation in gene copy number was sufficient to generate phenotypic consequences: in a number of cases diametrically opposing phenotypes were associated with gain versus loss of gene content. Surprisingly, some neurobehavioral traits were not rescued by restoration of the normal gene copy number. Transcriptome profiling showed that a highly significant propensity of transcriptional changes map to the engineered interval in the five assessed tissues. A statistically significant overrepresentation of the genes mapping to the entire length of the engineered chromosome was also found in the top-ranked differentially expressed genes in the mice containing rearranged chromosomes, regardless of the nature of the rearrangement, an observation robust across different cell lineages of the central nervous system. Our data indicate that a structural change at a given position of the human genome may affect not only locus and adjacent gene expression but also "genome regulation." Furthermore, structural change can cause the same perturbation in particular pathways regardless of gene dosage. Thus, the presence of a genomic structural change, as well as gene dosage imbalance, contributes to the ultimate phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A better understanding of the factors that mould ecological community structure is required to accurately predict community composition and to anticipate threats to ecosystems due to global changes. We tested how well stacked climate-based species distribution models (S-SDMs) could predict butterfly communities in a mountain region. It has been suggested that climate is the main force driving butterfly distribution and community structure in mountain environments, and that, as a consequence, climate-based S-SDMs should yield unbiased predictions. In contrast to this expectation, at lower altitudes, climate-based S-SDMs overpredicted butterfly species richness at sites with low plant species richness and underpredicted species richness at sites with high plant species richness. According to two indices of composition accuracy, the Sorensen index and a matching coefficient considering both absences and presences, S-SDMs were more accurate in plant-rich grasslands. Butterflies display strong and often specialised trophic interactions with plants. At lower altitudes, where land use is more intense, considering climate alone without accounting for land use influences on grassland plant richness leads to erroneous predictions of butterfly presences and absences. In contrast, at higher altitudes, where climate is the main force filtering communities, there were fewer differences between observed and predicted butterfly richness. At high altitudes, even if stochastic processes decrease the accuracy of predictions of presence, climate-based S-SDMs are able to better filter out butterfly species that are unable to cope with severe climatic conditions, providing more accurate predictions of absences. Our results suggest that predictions should account for plants in disturbed habitats at lower altitudes but that stochastic processes and heterogeneity at high altitudes may limit prediction success of climate-based S-SDMs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictive species distribution modelling (SDM) has become an essential tool in biodiversity conservation and management. The choice of grain size (resolution) of environmental layers used in modelling is one important factor that may affect predictions. We applied 10 distinct modelling techniques to presence-only data for 50 species in five different regions, to test whether: (1) a 10-fold coarsening of resolution affects predictive performance of SDMs, and (2) any observed effects are dependent on the type of region, modelling technique, or species considered. Results show that a 10 times change in grain size does not severely affect predictions from species distribution models. The overall trend is towards degradation of model performance, but improvement can also be observed. Changing grain size does not equally affect models across regions, techniques, and species types. The strongest effect is on regions and species types, with tree species in the data sets (regions) with highest locational accuracy being most affected. Changing grain size had little influence on the ranking of techniques: boosted regression trees remain best at both resolutions. The number of occurrences used for model training had an important effect, with larger sample sizes resulting in better models, which tended to be more sensitive to grain. Effect of grain change was only noticeable for models reaching sufficient performance and/or with initial data that have an intrinsic error smaller than the coarser grain size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: We sought to improve upon previously published statistical modeling strategies for binary classification of dyslipidemia for general population screening purposes based on the waist-to-hip circumference ratio and body mass index anthropometric measurements. METHODS: Study subjects were participants in WHO-MONICA population-based surveys conducted in two Swiss regions. Outcome variables were based on the total serum cholesterol to high density lipoprotein cholesterol ratio. The other potential predictor variables were gender, age, current cigarette smoking, and hypertension. The models investigated were: (i) linear regression; (ii) logistic classification; (iii) regression trees; (iv) classification trees (iii and iv are collectively known as "CART"). Binary classification performance of the region-specific models was externally validated by classifying the subjects from the other region. RESULTS: Waist-to-hip circumference ratio and body mass index remained modest predictors of dyslipidemia. Correct classification rates for all models were 60-80%, with marked gender differences. Gender-specific models provided only small gains in classification. The external validations provided assurance about the stability of the models. CONCLUSIONS: There were no striking differences between either the algebraic (i, ii) vs. non-algebraic (iii, iv), or the regression (i, iii) vs. classification (ii, iv) modeling approaches. Anticipated advantages of the CART vs. simple additive linear and logistic models were less than expected in this particular application with a relatively small set of predictor variables. CART models may be more useful when considering main effects and interactions between larger sets of predictor variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wide range of numerical models and tools have been developed over the last decades to support the decision making process in environmental applications, ranging from physical models to a variety of statistically-based methods. In this study, a landslide susceptibility map of a part of Three Gorges Reservoir region of China was produced, employing binary logistic regression analyses. The available information includes the digital elevation model of the region, geological map and different GIS layers including land cover data obtained from satellite imagery. The landslides were observed and documented during the field studies. The validation analysis is exploited to investigate the quality of mapping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to investigate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eurymetopum is an Andean clerid genus with 22 species. We modeled the ecological niches of 19 species with Maxent and used them as potential distributional maps to identify patterns of richness and endemicity. All modeled species maps were overlapped in a single map in order to determine richness. We performed an optimality analysis with NDM/VNDM in a grid of 1º latitude-longitude in order to identify endemism. We found a highly rich area, located between 32º and 41º south latitude, where the richest pixels have 16 species. One area of endemism was identified, located in the Maule and Valdivian Forest biogeographic provinces, which extends also to the Santiago province of the Central Chilean subregion, and contains four endemic species (E. parallelum, E. prasinum, E. proteus, and E. viride), as well as 16 non-endemic species. The sympatry of these phylogenetically unrelated species might indicate ancient vicariance processes, followed by episodes of dispersal. Based on our results, we suggest a close relationship between these provinces, with the Maule representing a complex area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we address the issue of locating hierarchical facilities in the presence of congestion. Two hierarchical models are presented, where lower level servers attend requests first, and then, some of the served customers are referred to higher level servers. In the first model, the objective is to find the minimum number of servers and theirlocations that will cover a given region with a distance or time standard. The second model is cast as a Maximal Covering Location formulation. A heuristic procedure is then presented together with computational experience. Finally, some extensions of these models that address other types of spatial configurations are offered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human activities in tropical forests are the main causes of forest fragmentation. According to historical factor in deforestation processes, forest remnants exhibit different sizes and shapes. The aim of the present study was to evaluate the dung beetle assemblage on fragments of different degree of sizes. Sampling was performed during rainy and dry season of 2010 in six fragments of Atlantic forest, using pitfall traps baited with excrement and carrion. Also, we used two larger fragments as control. We used General Linear Models to determine whether the fragments presented distinguished dung beetle abundance and richness. Analysis of Similarities and Non-Metric Multidimensional Scaling were used to determine whether the dung beetle assemblage was grouped according to species composition. A total of 3352 individuals were collected and 19 species were identified in the six fragments sampled. Dung beetle abundance exhibited a shift according to fragment size; however, richness did not change among fragments evaluated. Also, fragments sampled and the two controls exhibited distinct species composition. The distinction on abundance of dung beetles among fragments may be related to different amount of resource available in each one. It is likely that the dung beetle richness did not distinguish among the different fragments due to the even distribution of the mammal communities in these patches, and consequent equal dung diversity. We conclude that larger fragments encompass higher abundance of dung beetle and distinct species. However, for a clearer understanding of effects of fragmentation on dung beetles in Atlantic forest, studies evaluating narrower variations of larger fragments should be conducted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently in Brazil, as in other parts of the world, the concern is great with the increase of degraded agricultural soil, which is mostly related to the occurrence of soil compaction. Although soil texture is recognized as a very important component in the soil compressive behaviors, there are few studies that quantify its influence on the structural changes of Latosols in the Brazilian Cerrado region. This study aimed to evaluate structural changes and the compressive behavior of Latosols in Rio Verde, Goiás, through the modeling of additional soil compaction. The study was carried out using five Latosols with very different textures, under different soil compaction levels. Water retention and soil compression curves, and bearing capacity models were determined from undisturbed samples collected on the B horizons. Results indicated that clayey and very clayey Latosols were more susceptible to compression than medium-textured soils. Soil compression curves at density values associate with edaphic functions were used to determine the beneficial pressure (σ b) , i.e., pressure with optimal water retention, and critical pressure (σcrMAC), i.e., pressure with macroporosity below critical levels. These pressure values were higher than the preconsolidation pressure (σp), and therefore characterized as additional compaction. Based on the compressive behavior of these Latosols, it can be concluded that the combined preconsolidation pressure, beneficial pressure and critical pressure allow a better understanding of compression processes of Latosols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationships between nutrient contents and indices of the Diagnosis and Recommendation Integrated System (DRIS) are a useful basis to determine appropriate ranges for the interpretation of leaf nutrient contents. The purpose of this study was to establish Beaufils ranges from statistical models of the relationship between foliar concentrations and DRIS indices, generated by two systems of DRIS norms - the F value and natural logarithm transformation - and assess the nutritional status of cotton plants, based on these Beaufils ranges. Yield data from plots (average acreage 100 ha) and foliar concentrations of macro and micronutrients of cotton (Gossypium hirsutum r. latifolium) plants, in the growing season 2004/2005, were stored in a database. The criterion to define the reference population consisted of plots with above-average yields + 0.5 standard deviation (over 4,575 kg ha-1 seed cotton yield). The best-fitting statistical model of the relationship between foliar nutrient concentrations and DRIS indices was linear, with R² > 0.8090, p < 0.01, except for N, with R² = 0.5987, p < 0.01. The two criteria were effective to diagnose the plant nutritional status. The diagnoses were not random, but based on the effectiveness of the chi-square-tested method. The agreement between the methods to assess the nutritional status was 92.59-100 %, except for S, with 74.07 % agreement.