999 resultados para reading system
Resumo:
Estimates of soil organic carbon (SOC) stocks and changes under different land use systems can help determine vulnerability to land degradation. Such information is important for countries in and areas with high susceptibility to desertification. SOC stocks, and predicted changes between 2000 and 2030, were determined at the national scale for Jordan using The Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System. For the purpose of this study, Jordan was divided into three natural regions (The Jordan Valley, the Uplands and the Badia) and three developmental regions (North, Middle and South). Based on this division, Jordan was divided into five zones (based on the dominant land use): the Jordan Valley, the North Uplands, the Middle Uplands, the South Uplands and the Badia. This information was merged using GIS, along with a map of rainfall isohyets, to produce a map with 498 polygons. Each of these was given a unique ID, a land management unit identifier and was characterized in terms of its dominant soil type. Historical land use data, current land use and future land use change scenarios were also assembled, forming major inputs of the modelling system. The GEFSOC Modelling System was then run to produce C stocks in Jordan for the years 1990, 2000 and 2030. The results were compared with conventional methods of estimating carbon stocks, such as the mapping based SOTER method. The results of these comparisons showed that the model runs are acceptable, taking into consideration the limited availability of long-term experimental soil data that can be used to validate them. The main findings of this research show that between 2000 and 2030, SOC may increase in heavily used areas under irrigation and will likely decrease in grazed rangelands that cover most of Jordan giving an overall decrease in total SOC over time if the land is indeed used under the estimated forms of land use. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A U-series calcrete chronology has been constructed for three Late Quaternary terrace units, termed the D1, D2 and D3 terraces in age descending order, from the Rio Aguas river system of the Sorbas basin, southeast Spain. The D1 terrace formed between 30,300 +/- 4400 year BP and 12,140 +/- 360 year BP, correlating well with the Last Glacial Maximum when rates of sediment supply would have increased greatly, because of higher rates of weathering, reduced vegetation cover and weak soil development. The D2 terrace formed between 12,800 +/- 1100 year BP and 9,600 +/- 530 year BP, correlating well with the Younger Dryas event. The D3 terrace could only be poorly constrained to the early Holocene and no unequivocal cause could be assigned to this period of aggradation. The sedimentology and geomorphology of the D2 terrace suggests, however, that the aggradation of this unit was a response to diapirism/karstic processes occurring within the underlying Messinian gypsum strata and the subsequent damming of the Aguas system. Therefore, despite its coincident occurrence with the Younger Dryas, aggradation of the D2 terrace is unrelated to climate change. The style of this response, controlled predominantly by the characteristics of the underlying bedrock, makes correlating the terrace record of the Aguas with other systems in the Mediterranean unreliable. This study, therefore, highlights the problems of correlating fluvial sequences in regions of variable tectonics, climatic history and bedrock geology and emphasises the need to properly understand the main controls on individual fluvial systems before any attempt is made to correlate their depositional histories. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
An X-ray micro-tomography system has been designed that is dedicated to the low-dose imaging of radiation sensitive living organisms and has been used to image the early development of the first few days of plant development immediately after germination. The system is based on third-generation X-ray micro-tomography system and consists of an X-ray tube, two-dimensional X-ray detector and a mechanical sample manipulation stage. The X-ray source is a 50 kVp X-ray tube with a silver target with a filter to centre the X-ray spectrum on 22 keV.A 100 mm diameter X-ray image intensifier (XRII) is used to collect the two-dimensional projection images. The rotation tomography table incorporates a linear translation mechanism to eliminate ring artefact that is commonly associated with third-generation tomography systems' Developing maize seeds (Triticum aestivum) have been imaged using the system with a cubic voxel linear dimension of 100 mum, over a diameter of 25 mm and the root lengths and volumes measured. The X-ray dose to the plants was also assessed and found to have no effect on the plant root development. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Phosphorite-filled crustacean burrows associated with a Campanian-age omission surface in the north-western Negev are described. The phosphatic burrow casts weather out displaying scratches (bioglyphs) and two types of local swellings (chambers), which are flattened normal to the course of the burrow. The more abundant chamber type is a flattened spheroid (diameter 45-50 mm) or a flattened, highly prolate ellipsoid of larger dimensions, with bioglyphs. The other type is a flattened spheroid (diameter 45 mm), gently rounded on the upper side and flat on the base. Rings of elevations on the cast (representing moats) form interconnected circlets, each capped by about eight rounded hemispherical tubercles (4 x 4 mm) (pits on original), the whole forming a discrete network. The first type of chamber may have hosted the young (nursery chamber) and/or stored food. The second type of cast replicates a chamber with a pitted floor, which may have formed a brood chamber for 60-70 spherical eggs, each about 3 mm in diameter. Brood chambers in crustacean burrow systems were previously suspected, but only at burrow terminations. The interpreted K-type breeding strategy, brood care and associated functions require a high degree of social organization, none of which has been observed in extant crustaceans, but all occur within social insects.
Resumo:
Soil organic carbon (SOC) plays a vital role in ecosystem function, determining soil fertility, water holding capacity and susceptibility to land degradation. In addition, SOC is related to atmospheric CO, levels with soils having the potential for C release or sequestration, depending on land use, land management and climate. The United Nations Convention on Climate Change and its Kyoto Protocol, and other United Nations Conventions to Combat Desertification and on Biodiversity all recognize the importance of SOC and point to the need for quantification of SOC stocks and changes. An understanding of SOC stocks and changes at the national and regional scale is necessary to further our understanding of the global C cycle, to assess the responses of terrestrial ecosystems to climate change and to aid policy makers in making land use/management decisions. Several studies have considered SOC stocks at the plot scale, but these are site specific and of limited value in making inferences about larger areas. Some studies have used empirical methods to estimate SOC stocks and changes at the regional scale, but such studies are limited in their ability to project future changes, and most have been carried out using temperate data sets. The computational method outlined by the Intergovernmental Panel on Climate Change (IPCC) has been used to estimate SOC stock changes at the regional scale in several studies, including a recent study considering five contrasting eco regions. This 'one step' approach fails to account for the dynamic manner in which SOC changes are likely to occur following changes in land use and land management. A dynamic modelling approach allows estimates to be made in a manner that accounts for the underlying processes leading to SOC change. Ecosystem models, designed for site scale applications can be linked to spatial databases, giving spatially explicit results that allow geographic areas of change in SOC stocks to be identified. Some studies have used variations on this approach to estimate SOC stock changes at the sub-national and national scale for areas of the USA and Europe and at the watershed scale for areas of Mexico and Cuba. However, a need remained for a national and regional scale, spatially explicit system that is generically applicable and can be applied to as wide a range of soil types, climates and land uses as possible. The Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System was developed in response to this need. The GEFSOC system allows estimates of SOC stocks and changes to be made for diverse conditions, providing essential information for countries wishing to take part in an emerging C market, and bringing us closer to an understanding of the future role of soils in the global C cycle. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The restoration of wetlands as bird habitats often involves the maintenance of a fluctuating water regime by careful, localised ditch water management using pumps and sluices. However, there is evidence in the literature to Suggest that alternate flood/drainage cycles can accelerate nutrient cycling and transport within the soil and, therefore, pose a threat to water quality through the process of eutrophication. This study focused on the dynamics and losses of soil P in a recently re-wetted, eutrophic fen peat developed on alluvium ill South west England. During the 2-year Study (2001 and 2002), soil water tensiometry revealed that the field water table (fluctuating annually between +20 and 60 cm relative to ground level) was extensively influenced across most of the 8.4 ha field site by the management of the adjacent ditch water levels. This conservation-led, prescribed water balance was facilitated by the high hydraulic conductivity (1.1 x 10(-s) ms(-1)) of the lower (70-140 cm), degraded layer of peat. However, only during a 7-day period of water table drawdown by intermittent pump drainage, approximately 45 g ha(-1) of dissolved reactive P (DRP) entered the pumped ditch from the field via this degraded layer. Summer rainfall events >35 mm d(-1) also coincided with significant peaks ill ditch water P concentration (up to 200 mu g L-1 DRP). Even larger peaks (Up to 700 mu g L-1 DRP) Occurred With the annual onset of autumn reflooding. These episodic P loss events pose a serious potential threat to biological water quality. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper describes an assessment of the nitrogen and phosphorus dynamics of the River Kennet in the south east of England. The Kennet catchment (1200 km(2)) is a predominantly groundwater fed river impacted by agricultural and sewage sources of nutrient (nitrogen and phosphorus) pollution. The results from a suite of simulation models are integrated to assess the key spatial and temporal variations in the nitrogen (N) and phosphorus (P) chemistry, and the influence of changes in phosphorous inputs from a Sewage Treatment Works on the macrophyte and epiphyte growth patterns. The models used are the Export Co-efficient model, the Integrated Nitrogen in Catchments model, and a new model of in-stream phosphorus and macrophyte dynamics: the 'Kennet' model. The paper concludes with a discussion on the present state of knowledge regarding the water quality functioning, future research needs regarding environmental modelling and the use of models as management tools for large, nutrient impacted riverine systems. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
The effectiveness of remediation of the highly acidic and transition metal polluted mine water discharge from the Wheal Jane Mine by the Wheal Jane Passive Treatment Plant is described. The success of the remediation required that all the system components work as predicted. The study shows considerable success in the removal of key toxic metals and clearly demonstrates the potential for natural attenuation of acid mine drainage, particularly iron oxidation, by microbial populations. The Wheal Jane Passive Treatment Plant provides the only experimental facility of its kind. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In developing techniques for monitoring the costs associated with different procurement routes, the central task is disentangling the various project costs incurred by organizations taking part in construction projects. While all firms are familiar with the need to analyse their own costs, it is unusual to apply the same kind of analysis to projects. The purpose of this research is to examine the claims that new ways of working such as strategic alliancing and partnering bring positive business benefits. This requires that costs associated with marketing, estimating, pricing, negotiation of terms, monitoring of performance and enforcement of contract are collected for a cross-section of projects under differing arrangements, and from those in the supply chain from clients to consultants, contractors, sub-contractors and suppliers. Collaboration with industrial partners forms the basis for developing a research instrument, based on time sheets, which will be relevant for all those taking part in the work. The signs are that costs associated with tendering are highly variable, 1-15%, depending upon what precisely is taken into account. The research to date reveals that there are mechanisms for measuring the costs of transactions and these will generate useful data for subsequent analysis.
Resumo:
We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances.