984 resultados para rating model arbitrage
Resumo:
The German version of the Conners Adult ADHD Rating Scales (CAARS) has proven to show very high model fit in confirmative factor analyses with the established factors inattention/memory problems, hyperactivity/restlessness, impulsivity/emotional lability, and problems with self-concept in both large healthy control and ADHD patient samples. This study now presents data on the psychometric properties of the German CAARS-self-report (CAARS-S) and observer-report (CAARS-O) questionnaires.
Resumo:
Detecting user affect automatically during real-time conversation is the main challenge towards our greater aim of infusing social intelligence into a natural-language mixed-initiative High-Fidelity (Hi-Fi) audio control spoken dialog agent. In recent years, studies on affect detection from voice have moved on to using realistic, non-acted data, which is subtler. However, it is more challenging to perceive subtler emotions and this is demonstrated in tasks such as labelling and machine prediction. This paper attempts to address part of this challenge by considering the role of user satisfaction ratings and also conversational/dialog features in discriminating contentment and frustration, two types of emotions that are known to be prevalent within spoken human-computer interaction. However, given the laboratory constraints, users might be positively biased when rating the system, indirectly making the reliability of the satisfaction data questionable. Machine learning experiments were conducted on two datasets, users and annotators, which were then compared in order to assess the reliability of these datasets. Our results indicated that standard classifiers were significantly more successful in discriminating the abovementioned emotions and their intensities (reflected by user satisfaction ratings) from annotator data than from user data. These results corroborated that: first, satisfaction data could be used directly as an alternative target variable to model affect, and that they could be predicted exclusively by dialog features. Second, these were only true when trying to predict the abovementioned emotions using annotator?s data, suggesting that user bias does exist in a laboratory-led evaluation.
Resumo:
The understanding of the structure and dynamics of the intricate network of connections among people that consumes products through Internet appears as an extremely useful asset in order to study emergent properties related to social behavior. This knowledge could be useful, for example, to improve the performance of personal recommendation algorithms. In this contribution, we analyzed five-year records of movie-rating transactions provided by Netflix, a movie rental platform where users rate movies from an online catalog. This dataset can be studied as a bipartite user-item network whose structure evolves in time. Even though several topological properties from subsets of this bipartite network have been reported with a model that combines random and preferential attachment mechanisms [Beguerisse Díaz et al., 2010], there are still many aspects worth to be explored, as they are connected to relevant phenomena underlying the evolution of the network. In this work, we test the hypothesis that bursty human behavior is essential in order to describe how a bipartite user-item network evolves in time. To that end, we propose a novel model that combines, for user nodes, a network growth prescription based on a preferential attachment mechanism acting not only in the topological domain (i.e. based on node degrees) but also in time domain. In the case of items, the model mixes degree preferential attachment and random selection. With these ingredients, the model is not only able to reproduce the asymptotic degree distribution, but also shows an excellent agreement with the Netflix data in several time-dependent topological properties.
Resumo:
Background: The “Mackey Childbirth Satisfaction Rating Scale” (MCSRS) is a complete non-validated scale which includes the most important factors associated with maternal satisfaction. Our primary purpose was to describe the internal structure of the scale and validate the reliability and validity of concept of its Spanish version MCSRS-E. Methods: The MCSRS was translated into Spanish, back-translated and adapted to the Spanish population. It was then administered following a pilot test with women who met the study participant requirements. The scale structure was obtained by performing an exploratory factorial analysis using a sample of 304 women. The structures obtained were tested by conducting a confirmatory factorial analysis using a sample of 159 women. To test the validity of concept, the structure factors were correlated with expectations prior to childbirth experiences. McDonald’s omegas were calculated for each model to establish the reliability of each factor. The study was carried out at four University Hospitals; Alicante, Elche, Torrevieja and Vinalopo Salud of Elche. The inclusion criteria were women aged 18–45 years old who had just delivered a singleton live baby at 38–42 weeks through vaginal delivery. Women who had difficulty speaking and understanding Spanish were excluded. Results: The process generated 5 different possible internal structures in a nested model more consistent with the theory than other internal structures of the MCSRS applied hitherto. All of them had good levels of validation and reliability. Conclusions: This nested model to explain internal structure of MCSRS-E can accommodate different clinical practice scenarios better than the other structures applied to date, and it is a flexible tool which can be used to identify the aspects that should be changed to improve maternal satisfaction and hence maternal health.
Resumo:
Objectives: This pilot study describes a modelling approach to translate group-level changes in health status into changes in preference values, by using the effect size (ES) to summarize group-level improvement. Methods: ESs are the standardized mean difference between treatment groups in standard deviation (SD) units. Vignettes depicting varying severity in SD decrements on the SF-12 mental health summary scale, with corresponding symptom severity profiles, were valued by a convenience sample of general practitioners (n = 42) using the rating scale (RS) and time trade-off methods. Translation factors between ES differences and change in preference value were developed for five mental disorders, such that ES from published meta-analyses could be transformed into predicted changes in preference values. Results: An ES difference in health status was associated with an average 0.171-0.204 difference in preference value using the RS, and 0.104-0.158 using the time trade off. Conclusions: This observed relationship may be particular to the specific versions of the measures employed in the present study. With further development using different raters and preference measures, this approach may expand the evidence base available for modelling preference change for economic analyses from existing data.
Resumo:
The present study examined the applicability of the double ABCX model of family adjustment in explaining maternal adjustment to caring for a child diagnosed with Asperger syndrome. Forty-seven mothers completed questionnaires at a university clinic while their children were participating in an anxiety intervention. The children were aged between 10 and 12 years. Results of correlations showed that each of the model components was related to one or more domains of maternal adjustment in the direction predicted, with the exception of problem-focused coping. Hierarchical regression analyses demonstrated that, after controlling for the effects of relevant demographics, stressor severity, pile-up of demands and coping were related to adjustment. Findings indicate the utility of the double ABCX model in guiding research into parental adjustment when caring for a child with Asperger syndrome. Limitations of the study and clinical implications are discussed.
Resumo:
When constructing and using environmental models, it is typical that many of the inputs to the models will not be known perfectly. In some cases, it will be possible to make observations, or occasionally physics-based uncertainty propagation, to ascertain the uncertainty on these inputs. However, such observations are often either not available or even possible, and another approach to characterising the uncertainty on the inputs must be sought. Even when observations are available, if the analysis is being carried out within a Bayesian framework then prior distributions will have to be specified. One option for gathering or at least estimating this information is to employ expert elicitation. Expert elicitation is well studied within statistics and psychology and involves the assessment of the beliefs of a group of experts about an uncertain quantity, (for example an input / parameter within a model), typically in terms of obtaining a probability distribution. One of the challenges in expert elicitation is to minimise the biases that might enter into the judgements made by the individual experts, and then to come to a consensus decision within the group of experts. Effort is made in the elicitation exercise to prevent biases clouding the judgements through well-devised questioning schemes. It is also important that, when reaching a consensus, the experts are exposed to the knowledge of the others in the group. Within the FP7 UncertWeb project (http://www.uncertweb.org/), there is a requirement to build a Webbased tool for expert elicitation. In this paper, we discuss some of the issues of building a Web-based elicitation system - both the technological aspects and the statistical and scientific issues. In particular, we demonstrate two tools: a Web-based system for the elicitation of continuous random variables and a system designed to elicit uncertainty about categorical random variables in the setting of landcover classification uncertainty. The first of these examples is a generic tool developed to elicit uncertainty about univariate continuous random variables. It is designed to be used within an application context and extends the existing SHELF method, adding a web interface and access to metadata. The tool is developed so that it can be readily integrated with environmental models exposed as web services. The second example was developed for the TREES-3 initiative which monitors tropical landcover change through ground-truthing at confluence points. It allows experts to validate the accuracy of automated landcover classifications using site-specific imagery and local knowledge. Experts may provide uncertainty information at various levels: from a general rating of their confidence in a site validation to a numerical ranking of the possible landcover types within a segment. A key challenge in the web based setting is the design of the user interface and the method of interacting between the problem owner and the problem experts. We show the workflow of the elicitation tool, and show how we can represent the final elicited distributions and confusion matrices using UncertML, ready for integration into uncertainty enabled workflows.We also show how the metadata associated with the elicitation exercise is captured and can be referenced from the elicited result, providing crucial lineage information and thus traceability in the decision making process.
Resumo:
This Thesis reports on the principles and usefulness of Performance Rating as developed by the writer over a number of years. In Part one a brief analysis is made of the Quality scene and its development up to the present. The need is exposed for Performance Rating as a tool for all areas of management*. At the same time a system of Quality Control is described which the writer has further developed under the title of 'Operator Control'. This system is based on the integration of all Quality control functions with the creative functions required for Quality achievement. The discussions are mainly focussed on the general philosophy of Quality, its creation and control and that part of Operator Control which affects Performance Rating. Whereas it is shown that the combination of Operator Control and Performance Rating is both economically and technically advantageous, Performance Rating can also usefully be applied under inspection control conditions. Part two describes the principles of Area Performance Rating. *The need for, and the advantages of, Performance Rating are particularly demonstrated in Case study No.1. From this a summation expression is derived which gives the key for grouping of areas with similar Performance Rating (P). A model is devised on which the theory is demonstrated. Relevant case studies, carried out in practice in factories are quoted in Part two, Chapter 4, one written by the Quality manager of that particular factory. Particular stress is laid in the final conclusions on management's function in the Quality field and how greatly this function is eased and improved through the introduction of Area Performance Rating.
Resumo:
Dynamic asset rating (DAR) is one of the number of techniques that could be used to facilitate low carbon electricity network operation. Previous work has looked at this technique from an asset perspective. This paper focuses, instead, from a network perspective by proposing a dynamic network rating (DNR) approach. The models available for use with DAR are discussed and compared using measured load and weather data from a trial network area within Milton Keynes in the central area of the U.K. This paper then uses the most appropriate model to investigate, through a network case study, the potential gains in dynamic rating compared to static rating for the different network assets - transformers, overhead lines, and cables. This will inform the network operator of the potential DNR gains on an 11-kV network with all assets present and highlight the limiting assets within each season.
Resumo:
Dynamic asset rating is one of a number of techniques that could be used to facilitate low carbon electricity network operation. This paper focusses on distribution level transformer dynamic rating under this context. The models available for use with dynamic asset rating are discussed and compared using measured load and weather conditions from a trial Network area within Milton Keynes. The paper then uses the most appropriate model to investigate, through simulation, the potential gains in dynamic rating compared to static rating under two transformer cooling methods to understand the potential gain to the Network Operator.
Resumo:
The problem of selecting suppliers/partners is a crucial and important part in the process of decision making for companies that intend to perform competitively in their area of activity. The selection of supplier/partner is a time and resource-consuming task that involves data collection and a careful analysis of the factors that can positively or negatively influence the choice. Nevertheless it is a critical process that affects significantly the operational performance of each company. In this work, trough the literature review, there were identified five broad suppliers selection criteria: Quality, Financial, Synergies, Cost, and Production System. Within these criteria, it was also included five sub-criteria. Thereafter, a survey was elaborated and companies were contacted in order to answer which factors have more relevance in their decisions to choose the suppliers. Interpreted the results and processed the data, it was adopted a model of linear weighting to reflect the importance of each factor. The model has a hierarchical structure and can be applied with the Analytic Hierarchy Process (AHP) method or Simple Multi-Attribute Rating Technique (SMART). The result of the research undertaken by the authors is a reference model that represents a decision making support for the suppliers/partners selection process.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.