983 resultados para rapid solidification processing
Resumo:
Transnational Corporations (TNCs) have played a vital role in fostering rapid industrialisation in many developing countries. The Philippines is the case. However, the country has been far lagging behind other ASEAN members in economic performance. The present study examines this issue, mainly focusing on the linkage formation between TNCs affiliates and Philippine local suppliers. Three factors are proposed to determine the overall performance of linkage formation; i.e., outsourcing strategies of TNCs’ local affiliates, local entrepreneurial response, and host government policies. An economic enclave structure is clearly identified in the Philippines, in which only a few locally-owned suppliers have emerged. Extremely weak local entrepreneurship in the Philippines is identified to explain the poor performance of linkage formation.
Resumo:
Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone’s video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW
Resumo:
Following striate cortex damage in monkeys and humans there can be residual function mediated by parallel visual pathways. In humans this can sometimes be associated with a “feeling” that something has happened, especially with rapid movement or abrupt onset. For less transient events, discriminative performance may still be well above chance even when the subject reports no conscious awareness of the stimulus. In a previous study we examined parameters that yield good residual visual performance in the “blind” hemifield of a subject with unilateral damage to the primary visual cortex. With appropriate parameters we demonstrated good discriminative performance, both with and without conscious awareness of a visual event. These observations raise the possibility of imaging the brain activity generated in the “aware” and the “unaware” modes, with matched levels of discrimination performance, and hence of revealing patterns of brain activation associated with visual awareness. The intact hemifield also allows a comparison with normal vision. Here we report the results of a functional magnetic resonance imaging study on the same subject carried out under aware and unaware stimulus conditions. The results point to a shift in the pattern of activity from neocortex in the aware mode, to subcortical structures in the unaware mode. In the aware mode prestriate and dorsolateral prefrontal cortices (area 46) are active. In the unaware mode the superior colliculus is active, together with medial and orbital prefrontal cortical sites.
Resumo:
Interleukin 16 (IL-16) has been shown to function as chemoattractant factor, as a modulator of T-cell activation, and as an inhibitor of immunodeficiency virus replication. The recent identification of inconsistencies in published IL-16 cDNA nucleotide sequences led to the proposal that IL-16 is synthesized in the form of a large precursor protein (pro-IL-16). To identify the true transcriptional start of the IL-16 mRNA rapid amplification of cDNA ends methods were applied. The complete pro-IL-16 cDNA was subsequently molecularly cloned, sequenced, and expressed in COS-7 cells. We report here that pro-IL-16 is most likely synthesized as a 67-kDa protein and is encoded from a major 2.6-kb transcript. Recombinant pro-IL-16 polypeptides are specifically cleaved in lysates of CD8(+) cells, suggesting that the naturally secreted bioactive form of IL-16 is smaller than the originally published 130 amino acids fragment. Moreover, in contrast to other interleukins such as IL-15, IL-16 mRNA expression is almost exclusively limited to lymphatic tissues underlining the potential of IL-16 as an immune regulatory molecule.
Resumo:
Formation and discharge of dense-core secretory vesicles depend on controlled rearrangement of the core proteins during their assembly and dispersal. The ciliate Tetrahymena thermophila offers a simple system in which the mechanisms may be studied. Here we show that most of the core consists of a set of polypeptides derived proteolytically from five precursors. These share little overall amino acid identity but are nonetheless predicted to have structural similarity. In addition, sites of proteolytic processing are notably conserved and suggest that specific endoproteases as well as carboxypeptidase are involved in core maturation. In vitro binding studies and sequence analysis suggest that the polypeptides bind calcium in vivo. Core assembly and postexocytic dispersal are compartment-specific events. Two likely regulatory factors are proteolytic processing and exposure to calcium. We asked whether these might directly influence the conformations of core proteins. Results using an in vitro chymotrypsin accessibility assay suggest that these factors can induce sequential structural rearrangements. Such progressive changes in polypeptide folding may underlie the mechanisms of assembly and of rapid postexocytic release. The parallels between dense-core vesicles in different systems suggest that similar mechanisms are widespread in this class of organelles.
Resumo:
The synthesis of novel fluorogenic retro-aldol substrates for aldolase antibody 38C2 is described. These substrates are efficiently and specifically processed by antibody aldolases but not by natural cellular enzymes. Together, the fluorogenic substrates and antibody aldolases provide reporter gene systems that are compatible with living cells. The broad scope of the antibody aldolase allows for the processing of a range of substrates that can be designed to allow fluorescence monitoring at a variety of wavelengths. We also have developed the following concept in fluorescent protein tags. β-Diketones bearing a fluorescent tag are bound covalently by the aldolase antibody and not other proteins. We anticipate that proteins fused with the antibody can be tagged specifically and covalently within living cells with fluorophores of virtually any color, thereby providing an alternative to green fluorescent protein fusions.
Resumo:
There is a need for faster and more sensitive algorithms for sequence similarity searching in view of the rapidly increasing amounts of genomic sequence data available. Parallel processing capabilities in the form of the single instruction, multiple data (SIMD) technology are now available in common microprocessors and enable a single microprocessor to perform many operations in parallel. The ParAlign algorithm has been specifically designed to take advantage of this technology. The new algorithm initially exploits parallelism to perform a very rapid computation of the exact optimal ungapped alignment score for all diagonals in the alignment matrix. Then, a novel heuristic is employed to compute an approximate score of a gapped alignment by combining the scores of several diagonals. This approximate score is used to select the most interesting database sequences for a subsequent Smith–Waterman alignment, which is also parallelised. The resulting method represents a substantial improvement compared to existing heuristics. The sensitivity and specificity of ParAlign was found to be as good as Smith–Waterman implementations when the same method for computing the statistical significance of the matches was used. In terms of speed, only the significantly less sensitive NCBI BLAST 2 program was found to outperform the new approach. Online searches are available at http://dna.uio.no/search/
Resumo:
Rapid progress in effective methods to image brain functions has revolutionized neuroscience. It is now possible to study noninvasively in humans neural processes that were previously only accessible in experimental animals and in brain-injured patients. In this endeavor, positron emission tomography has been the leader, but the superconducting quantum interference device-based magnetoencephalography (MEG) is gaining a firm role, too. With the advent of instruments covering the whole scalp, MEG, typically with 5-mm spatial and 1-ms temporal resolution, allows neuroscientists to track cortical functions accurately in time and space. We present five representative examples of recent MEG studies in our laboratory that demonstrate the usefulness of whole-head magnetoencephalography in investigations of spatiotemporal dynamics of cortical signal processing.
Resumo:
We have devised a microspectroscopic strategy for assessing the intracellular (re)distribution and the integrity of the primary structure of proteins involved in signal transduction. The purified proteins are fluorescent-labeled in vitro and reintroduced into the living cell. The localization and molecular state of fluorescent-labeled protein kinase C beta I isozyme were assessed by a combination of quantitative confocal laser scanning microscopy, fluorescence lifetime imaging microscopy, and novel determinations of fluorescence resonance energy transfer based on photobleaching digital imaging microscopy. The intensity and fluorescence resonance energy transfer efficiency images demonstrate the rapid nuclear translocation and ensuing fragmentation of protein kinase C beta I in BALB/c3T3 fibroblasts upon phorbol ester stimulation, and suggest distinct, compartmentalized roles for the regulatory and catalytic fragments.
Resumo:
It has been known for more than 40 years that images fade from perception when they are kept at the same position on the retina by abrogating eye movements. Although aspects of this phenomenon were described earlier, the use of close-fitting contact lenses in the 1950s made possible a series of detailed observations on eye movements and visual continuity. In the intervening decades, many investigators have studied the role of image motion on visual perception. Although several controversies remain, it is clear that images deteriorate and in some cases disappear following stabilization; eye movements are, therefore, essential to sustained exoptic vision. The time course of image degradation has generally been reported to be a few seconds to a minute or more, depending upon the conditions. Here we show that images of entoptic vascular shadows can disappear in less than 80 msec. The rapid vanishing of these images implies an active mechanism of image erasure and creation as the basis of normal visual processing.
Resumo:
We report a general mass spectrometric approach for the rapid identification and characterization of proteins isolated by preparative two-dimensional polyacrylamide gel electrophoresis. This method possesses the inherent power to detect and structurally characterize covalent modifications. Absolute sensitivities of matrix-assisted laser desorption ionization and high-energy collision-induced dissociation tandem mass spectrometry are exploited to determine the mass and sequence of subpicomole sample quantities of tryptic peptides. These data permit mass matching and sequence homology searching of computerized peptide mass and protein sequence data bases for known proteins and design of oligonucleotide probes for cloning unknown proteins. We have identified 11 proteins in lysates of human A375 melanoma cells, including: alpha-enolase, cytokeratin, stathmin, protein disulfide isomerase, tropomyosin, Cu/Zn superoxide dismutase, nucleoside diphosphate kinase A, galaptin, and triosephosphate isomerase. We have characterized several posttranslational modifications and chemical modifications that may result from electrophoresis or subsequent sample processing steps. Detection of comigrating and covalently modified proteins illustrates the necessity of peptide sequencing and the advantages of tandem mass spectrometry to reliably and unambiguously establish the identity of each protein. This technology paves the way for studies of cell-type dependent gene expression and studies of large suites of cellular proteins with unprecedented speed and rigor to provide information complementary to the ongoing Human Genome Project.
Resumo:
The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.
Resumo:
Originally presented as the author's thesis (M.S.), University of Illinois at Urbana-Champaign.
Resumo:
A manufacturing technique for the production of aluminum components is described. A resin-bonded part is formed by a rapid prototyping technique and then debound and infiltrated by a second aluminum alloy under a nitrogen atmosphere. During thermal processing, the aluminum reacts with the nitrogen and is partially transformed into a rigid aluminum nitride skeleton, which provides the structural rigidity during infiltration. The simplicity and rapidity of this process in comparison to conventional production routes, combined with the ability to fabricate complicated parts of almost any geometry and with high dimensional precision, provide an additional means to manufacture aluminum components.
Resumo:
Understanding and controlling the eutectic solidification process in Al-Si alloys permits prediction of the formation of casting porosity, eventually leading to methods for its control and elimination. In addition, it enables control of eutectic structure, silicon morphology, and eutectic grain size to further improve the alloy properties. This paper presents the current understanding of eutectic solidification in hypoeutectic Al-Si foundry alloys and the relationship between eutectic solidification and porosity formation. New concepts in engineering eutectic solidification are also explored.