995 resultados para radiation mechanisms
Resumo:
The mechanisms underlying the occurrence of temperature extremes in Iberia are analysed considering a Lagrangian perspective of the atmospheric flow, using 6-hourly ERA-Interim reanalysis data for the years 1979–2012. Daily 2-m minimum temperatures below the 1st percentile and 2-m maximum temperatures above the 99th percentile at each grid point over Iberia are selected separately for winter and summer. Four categories of extremes are analysed using 10-d backward trajectories initialized at the extreme temperature grid points close to the surface: winter cold (WCE) and warm extremes (WWE), and summer cold (SCE) and warm extremes (SWE). Air masses leading to temperature extremes are first transported from the North Atlantic towards Europe for all categories. While there is a clear relation to large-scale circulation patterns in winter, the Iberian thermal low is important in summer. Along the trajectories, air mass characteristics are significantly modified through adiabatic warming (air parcel descent), upper-air radiative cooling and near-surface warming (surface heat fluxes and radiation). High residence times over continental areas, such as over northern-central Europe for WCE and, to a lesser extent, over Iberia for SWE, significantly enhance these air mass modifications. Near-surface diabatic warming is particularly striking for SWE. WCE and SWE are responsible for the most extreme conditions in a given year. For WWE and SCE, strong temperature advection associated with important meridional air mass transports are the main driving mechanisms, accompanied by comparatively minor changes in the air mass properties. These results permit a better understanding of mechanisms leading to temperature extremes in Iberia.
Resumo:
The urban heat island (UHI) phenomenon has been studied extensively, but there are relatively fewer reports on the so-called urban cool island (UCI) phenomenon. We reveal here that the UCI phenomenon exists in Hong Kong during the day, and is associated with the UHI at night under all wind and cloud conditions. The possible mechanisms for the UCI phenomenon in such a high-rise compact city have been discovered using a lumped urban air temperature model. A new concept of urban cool island degree hours (UCIdh) to measure the UCI intensity and duration is proposed. Our analyses reveal that when anthropogenic heat is small or absent, a high-rise and high-density city experiences a significant daytime UCI effect. This is explained by an intensified heat storage capacity and the reduced solar radiation gain of urban surfaces. However, if anthropogenic heat in the urban area increases further, the UCI phenomenon still exists, yet UCIdh decrease dramatically in a high-rise compact city. In a low-rise, low-density city, the UCI phenomenon also occurs when there is no anthropogenic heat, but easily disappears when there is little anthropogenic heat, and the UHI phenomenon dominates. This probably explains why the UHI phenomenon is often observed, but the UCI phenomenon is rarely observed. The co-existence of urban heat/cool island phenomena implies reduction of the daily temperature range (DTR) in such cities, and its dependence on urban morphology also implies that urban morphology can be used to control the urban thermal environment.
Resumo:
We study the evolution of a primordial black hole (PBH) taking into account the presence of dark energy modeled by a general perfect fluid. In the specific case of a stationary non-self-gravitating test fluid, the competition between radiation accretion, Hawking evaporation and the accretion of such a fluid has been studied in detail. The evaporation of PBHs is quite modified at late times by these effects. We address further generalizations of this scenario to consider other types of fluids, and point out early developments of a nonstationary accretion model.
Resumo:
The effect of increased UV radiation on photosynthesis estimated as in vivo chlorophyll fluorescence i.e. optimal quantum yield (F(v)/F(m)) and electron transport rate (ETR) in the green filamentous alga Zygnemopsis decussata (Streptophyta, Zygnematales) growing in the high mountain lake ""La Caldera"" (Sierra Nevada, Spain) at 3050 m altitude was evaluated. Two sets of in situ experiments were conducted: (1) On July 2006, F(v)/F(m) was measured throughout the day at different depths (0.1, 0.25, 0.5 and 1 m) and in the afternoon. ETR and phenolic compounds were determined. In addition, in order to analyze the effect of UV radiation, F(v)/F(m) was determined in algae incubated for 3 days at 0.5m under three different light treatments: PAR+UVA+UVB (PAB). PAR+UVA (PA) and PAR (P). (2) On August 2007, F(v)/F(m) was determined under PAB, PA and P treatments and desiccation/rehydration conditions. F(v)/F(m) decreased in algae growing in surface waters (0.1 m) but also at 1 m depth compared to that at 0.5 in depth. The decrease of F(v)/F(m) at noon due to photoinhibition was small (less than 10%) except in algae growing at 1 m depth (44%). The maximal electron transport rate was 3.5-5 times higher in algae growing at 0.25-0.5 m respectively than that at 0.1 and 1 m depth. These results are related to the accumulation of phenolic compounds: i.e. the algae at 0.25-0.5 in presentedrespectively about a 3-5 times higher concentration of phenolic compounds than that of algae at 0.1-1 m depth. The protection mechanisms seem to be stimulated by UVB radiation, since F(v)/F(m) was higher in the presence of UVB (PAB treatment) compared to PA or P treatments. UVA exerts the main photoinhibitory effect, not Only at midday, but also in the afternoon. UVB radiation also had a protective effect in algae grown under desiccation conditions for three days. During re-hydration, the rapid increase of F(v)/F(m) (after 1 h) was higher in the UVB-grown algae than in algae grown under UVA radiation. After 5 h. F(v)/F(m) values were similar in algae submitted to desiccation/rehydration under PAB and P treatments as they were in the control (submerged algae). The combined effect of desiccation and UVA produced the greatest decrease of photosynthesis in Z. decussata. Thifs UVB, in contrast to other species, may support the recovery process. Z. decussata can acclimate to severe stress, conditions in this high mountain lake by the photoprotection mechanism induced by UVB radiation through dynamic photoinhibition and the accumulation of phenolic compounds (UV screen and antioxidant substances).
Resumo:
Purpose: The interference of electric fields (EF) with biological processes is an issue of considerable interest. No studies have as yet been reported on the combined effect of EF plus ionising radiation. Here we report studies on this combined effect using the prokaryote Microcystis panniformis, the eukaryote Candida albicans and human cells. Materials and methods: Cultures of Microcystis panniformis (Cyanobacteria) in glass tubes were irradiated with doses in the interval 0.5-5kGy, using a 60Co gamma source facility. Samples irradiated with 3kGy were exposed for 2h to a 20Vcm-1 static electric field and viable cells were enumerated. Cultures of Candida albicans were incubated at 36C for 20h, gamma-irradiated with doses from 1-4kGy, and submitted to an electric field of 180Vcm-1. Samples were examined under a fluorescence microscope and the number of unviable (red) and viable (apple green fluorescence) cells was determined. For crossing-check purposes, MRC5 strain of lung cells were irradiated with 2 Gy, exposed to an electric field of 1250 V/cm, incubated overnight with the anti-body anti-phospho-histone H2AX and examined under a fluorescence microscope to quantify nuclei with -H2AX foci. Results: In cells exposed to EF, death increased substantially compared to irradiation alone. In C. albicans we observed suppression of the DNA repair shoulder. The effect of EF in growth of M. panniformis was substantial; the number of surviving cells on day-2 after irradiation was 12 times greater than when an EF was applied. By the action of a static electric field on the irradiated MRC5 cells the number of nuclei with -H2AX foci increased 40%, approximately. Conclusions: Application of an EF following irradiation greatly increases cell death. The observation that the DNA repair shoulder in the survival curve of C. albicans is suppressed when cells are exposed to irradiation+EF suggests that EF likely inactivate cellular recovering processes. The result for the number of nuclei with -H2AX foci in MRC5 cells indicates that an EF interferes mostly in the DNA repair mechanisms. A molecular ad-hoc model is proposed.
Resumo:
The persistent luminescence materials, barium aluminates doped with Eu(2+) and Dy(3+) (BaAl(2)O(4): Eu(2+),Dy(3+)), were prepared with the combustion synthesis at temperatures between 400 and 600 degrees C as well as with the solid state reaction at 1500 degrees C. The concentrations of Eu(2+)/Dy(3+) (in mol% of the Ba amount) ranged from 0.1/0.1 to 1.0/3.0. The electronic and defect energy level structures were studied with thermoluminescence (TL) and synchrotron radiation (SR) spectroscopies: UV-VUV excitation and emission, as well as with X-ray absorption near-edge structure (XANES) methods. Theoretical calculations using the density functional theory (DFT) were carried out in order to compare with the experimental data. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The nonadiabatic photochemistry of 6-azauracil has been studied by means of the CASPT2//CASSCF protocol and double-zeta plus polarization ANO basis sets. Minimum energy states, transition states, minimum energy paths, and surface intersections have been computed in order to obtain an accurate description of several potential energy hypersurfaces. It is concluded that, after absorption of ultraviolet radiation (248 nm), two main relaxation mechanisms may occur, via which the lowest (3)(pi pi*) state can be populated. The first one takes place via a conical intersection involving the bright (1)(pi pi*) and the lowest (1)(n pi*) states, ((1)pi pi*/(1)n pi*)(CI), from which a low energy singlet-triplet crossing, ((1)n pi*/(3)pi pi*)(STC), connecting the (1)(n pi*) state to the lowest (3)(pi pi*) triplet state is accessible. The second mechanism arises via a singlet-triplet crossing, ((1)pi pi*/(3)n pi*)(STC), leading to a conical intersection in the triplet manifold, ((3)n pi*/(3)pi pi*)(CI), evolving to the lowest (3)(pi pi*) state. Further radiationless decay to the ground state is possible through a (gs/(3)pi pi*)(STC).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.
Resumo:
We undertook a study of Porphyra acanthophora var. brasiliensis to determine its responses under ambient conditions, photosynthetically active radiation (PAR), and PAR+UVBR (ultraviolet radiation-B) treatment, focusing on changes in ultrastructure, and cytochemistry. Accordingly, control ambient samples were collected in the field, and two different treatments were performed in the laboratory. Plants were exposed to PAR at 60 mu mol photons m(-2) s(-1) and PAR+UVBR at 0.35 W m(-2) for 3 h per day during 21 days of in vitro cultivation. Confocal laser scanning microscopy analysis of the vegetative cells showed single stellate chloroplast in ambient and PAR samples, but in PAR+UVBR-exposed plants, the chloroplast showed alterations in the number and form of arms. Under PAR+UVBR treatment, the thylakoids of the chloroplasts were disrupted, and an increase in the number of plastoglobuli was observed, in addition to mitochondria, which appeared with irregular, disrupted morphology compared to ambient and PAR samples. After UVBR exposure, the formation of carpospores was also observed. Plants under ambient conditions, as well as those treated with PAR and PAR+UVBR, all showed different concentrations of enzymatic response, including glutathione peroxidase and reductase activity. In summary, the present study demonstrates that P. acanthophora var. brasiliensis shows the activation of distinct mechanisms against natural radiation, PAR and PAR+UVBR.
Resumo:
Photoprotection of the agarophyte red alga Gracilaria tenuistipitata against ultraviolet radiation (UVR) was investigated in algae submitted for 1 week to photosynthetically active radiation (PAR, 260 mu mol photons m(-2) s(-1)) or PAR + UVR (UV-A, 8.13 W m(-2) and UV-B, 0.42 W m(-2)) under different nitrogen concentrations: 0, 0.1, and 0.5 mM of NO3-. Photosynthetic pigments decreased during the time of the experiment mainly under low nitrogen supply and UVR. Incubation under high nitrogen supply (0.5 mM) sustained the photosynthetic levels over time. In contrast, mycosporine-like amino acids (MAAs) increased up to eightfold in the presence of UVR and 0.5 mM NO3-. Under PAR + UVR, maximal quantum yield was positively correlated to MAA abundance, whereas under PAR no correlation was found. The photosynthetic yield of algae cultivated during seven days under PAR + UVR was less affected by a 30-min exposure of high UVR (16 W m(-2)) and fully recovered after transferring to low PAR irradiances, whereas algae kept under PAR were more affected by UV exposure and no full recovery was observed. Growth rates decreased after three days in the presence of UVR and under low nitrate supply. However, these rates were similar when compared with treatments of PAR and PAR + UVR after seven days, with the exception of samples in 0 mM NO3-, indicating that the acclimation after one week's exposure is related to nitrate supply. In conclusion, the lowest negative effect of UVR on photosynthesis and growth rate in high N-supply-grown algae could be explained by the stimulation of photoprotection mechanisms, such as accumulation of MAAs. Photostimulation of MAA accumulation by UVR under high N supply was observed in G. tenuistipitata even after 20 years in culture without the induction of this photomorphogenic light signal.
Resumo:
[EN] Vaults are evolutionary highly conserved ribonucleoproteins particles with a hollow barrel-like structure. The main component of vaults represents the 110 kDa major vault protein (MVP), whereas two minor vaults proteins comprise the 193 kDa vault poly(ADP-ribose) polymerase (vPARP) and the 240 kDa telomerase-associated protein-1 (TEP-1). Additionally, at least one small and untranslated RNA is found as a constitutive component. MVP seems to play an important role in the development of multidrug resistance. This particle has also been implicated in the regulation of several cellular processes including transport mechanisms, signal transmission and immune responses. Vaults are considered a prognostic marker for different cancer types. The level of MVP expression predicts the clinical outcome after chemotherapy in different tumour types. Recently, new roles have been assigned to MVP and vaults including the association with the insulin-like growth factor-1, hypoxia-inducible factor-1alpha, and the two major DNA double-strand break repair machineries: non-homologous endjoining and homologous recombination. Furthermore, MVP has been proposed as a useful prognostic factor associated with radiotherapy resistance. Here, we review these novel actions of vaults and discuss a putative role of MVP and vaults in the response to radiotherapy.
Resumo:
It was observed in the ‘80s that the radiation damage on biological systems strongly depends on processes occurring at the microscopic level, involving the elementary constituents of biological cells. Since then, lot of attention has been paid to study elementary processes of photo- and ion-chemistry of isolated organic molecule of biological interest. This work fits in this framework and aims to study the radiation damage mechanisms induced by different types of radiations on simple halogenated biomolecules used as radiosensitizers in radiotherapy. The research is focused on the photofragmentation of halogenated pyrimidine molecules (5Br-pyrimidine, 2Br-pyrimidine and 2Cl-pyrimidine) in the VUV range and on the 12C4+ ion-impact fragmentation of the 5Br-uracil and its homogeneous and hydrated clusters. Although halogen substituted pyrimidines have similar structure to the pyrimidine molecule, their photodissociation dynamics is quite different. These targets have been chosen with the purpose of investigating the effect of the specific halogen atom and site of halogenation on the fragmentation dynamics. Theoretical and experimental studies have highlighted that the site of halogenation and the type of halogen atom, lead either to the preferential breaking of the pyrimidinic ring or to the release of halogen/hydrogen radicals. The two processes can subsequently trigger different mechanisms of biological damage. To understand the effect of the environment on the fragmentation dynamic of the single molecule, the ion-induced fragmentation of homogenous and hydrated clusters of 5Br-uracil have been studied and compared to similar studies on the isolated molecule. The results show that the “protective effect” of the environment on the single molecule hold in the homogeneous clusters, but not in the hydrated clusters, where several hydrated fragments have been observed. This indicates that the presence of water molecules can inhibit some fragmentation channels and promote the keto-enol tautomerization, which is very important in the mutagenesis of the DNA.
Resumo:
Inhibitors of angiogenesis and radiation induce compensatory changes in the tumor vasculature both during and after cessation of treatment. In numerous preclinical studies, angiogenesis inhibitors were shown to be efficient in the treatment of many pathological conditions, including solid cancers. In most clinical trials, however, this approach turned out to have no significant effect, especially if applied as monotherapy. Recovery of tumors after therapy is a major problem in the management of cancer patients. The mechanisms underlying tumor recovery (or therapy resistance) have not yet been explicitly elucidated. This review deals with the transient switch from sprouting to intussusceptive angiogenesis, which may be an adaptive response of tumor vasculature to cancer therapy that allows the vasculature to maintain its functional properties. Potential candidates for molecular targeting of this angioadaptive mechanism are yet to be elucidated in order to improve the currently poor efficacy of contemporary antiangiogenic therapies.
Resumo:
Radiation metabolomics has aided in the identification of a number of biomarkers in cells and mice by ultra-performance liquid chromatography-coupled time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) and in rats by gas chromatography-coupled mass spectrometry (GCMS). These markers have been shown to be both dose- and time-dependent. Here UPLC-ESI-QTOFMS was used to analyze rat urine samples taken from 12 rats over 7 days; they were either sham-irradiated or γ-irradiated with 3 Gy after 4 days of metabolic cage acclimatization. Using multivariate data analysis, nine urinary biomarkers of γ radiation in rats were identified, including a novel mammalian metabolite, N-acetyltaurine. These upregulated urinary biomarkers were confirmed through tandem mass spectrometry and comparisons with authentic standards. They include thymidine, 2'-deoxyuridine, 2'deoxyxanthosine, N(1)-acetylspermidine, N-acetylglucosamine/galactosamine-6-sulfate, N-acetyltaurine, N-hexanoylglycine, taurine and, tentatively, isethionic acid. Of these metabolites, 2'-deoxyuridine and thymidine were previously identified in the rat by GCMS (observed as uridine and thymine) and in the mouse by UPLC-ESI-QTOFMS. 2'Deoxyxanthosine, taurine and N-hexanoylglycine were also seen in the mouse by UPLC-ESI-QTOFMS. These are now unequivocal cross-species biomarkers for ionizing radiation exposure. Downregulated biomarkers were shown to be related to food deprivation and starvation mechanisms. The UPLC-ESI-QTOFMS approach has aided in the advance for finding common biomarkers of ionizing radiation exposure.