987 resultados para rDNA systematics
Resumo:
n.s. no.41(1988)
Resumo:
n.s. no.4(1980)
Resumo:
n.s. no.31(1995)
Resumo:
n.s. no.5(1980)
Resumo:
n.s. no.12(1982)
Resumo:
n.s. no.10(1982)
Resumo:
Gargaphia inca Monte, 1943 was synonymized with G. opima Drake, 1931 without any declared reasons. Gargaphia inca is known only from its type location (Satipo, Peru), and G. opima from Colombia (Villavencio) and Peru (Cam. Del Pichis, type-locality), in addition to the new records here presented, including the first record for Ecuador. Both species are redescribed, and the status of G. inca is revisited and raised from synonymy. Illustrations of some of the most remarkable differences between these taxa are provided, as well as dorsal habitus images. Discussions on the genus systematic status and this nomenclatural act are presented.
Resumo:
no.82 (1990)
Resumo:
Because of the relative epidemiological significance of Triatoma sordida, T. guasayana and T. patagonica, and the need to resolve doubts about their taxonomic validity, we report here a detailed taxonomic comparison of the three species using multivariate analysis of morphometric measures combined with comparisons of their genitalia and antennal structures. From the 17 metric variables studied, the length of the second segment of the rostrum and the anteocular length provided a discrimination function able to separate without error T. sordida from T. guasayana and T. patagonica. The multivariate discriminant functions classified T. guasayana and T. patagonica with an error of 2.44%. Comparison of the male genitalia of T. guasayana and T. sordida showed that there are minor differences in the articulatory apparatus, the median process of the pygophore, the phallosome support and the vesica, with bigger differences in the endosomal process and the phallosome. However, the already described male genitalia of T. patagonica is very similar to that of T. sordida. Analysis of antennal structure by scanning electron microscope showed that sensilla distribution around the pedicel is slightly different in the three species and sensilla density is highest in T. sordida and lowest in T. patagonica. The study showed that the three species form a closely related group. The results confirm the earlier classification of sordida and guasayana as separate species, but they raise some doubts about the taxonomic status of T. patagonica.
Resumo:
A new phylogenetic analysis of the Nyssorhynchus subgenus (Danoff-Burg and Conn, unpub. data) using six data sets {morphological (all life stages); scanning electron micrographs of eggs; nuclear ITS2 sequences; mitochondrial COII, ND2 and ND6 sequences} revealed different topologies when each data set was analyzed separately but no heterogeneity between the data sets using the arn test. Consequently, the most accurate estimate of the phylogeny was obtained when all the data were combined. This new phylogeny supports a monophyletic Nyssorhynchus subgenus but both previously recognized sections in the subgenus (Albimanus and Argyritarsis) were demonstrated to be paraphyletic relative to each other and four of the seven clades included species previously placed in both sections. One of these clades includes both Anopheles darlingi and An. albimanus, suggesting that the ability to vector malaria effectively may have originated once in this subgenus. Both a conserved (315 bp) and a variable (425 bp) region of the mitochondrial COI gene from 15 populations of An. darlingi from Belize, Bolivia, Brazil, French Guiana, Peru and Venezuela were used to examine the evolutionary history of this species and to test several analytical assumptions. Results demonstrated (1) parsimony analysis is equally informative compared to distance analysis using NJ; (2) clades or clusters are more strongly supported when these two regions are combined compared to either region separately; (3) evidence (in the form of remnants of older haplotype lineages) for two colonization events; and (4) significant genetic divergence within the population from Peixoto de Azevedo (State of Mato Grosso, Brazil). The oldest lineage includes populations from Peixoto, Boa Vista (State of Roraima) and Dourado (State of São Paulo).
Resumo:
Studies based on shell or reproductive organ morphology and genetic considerations suggest extensive intraspecific variation in Biomphalaria snails. The high variability at the morphological and genetic levels, as well as the small size of some specimens and similarities between species complicate the correct identification of these snails. Here we review our work using methods based on polymerase chain reaction (PCR) amplification for analysis of genetic variation and identification of Biomphalaria snails from Brazil, Argentina, Uruguay and Paraguay. Arbitrarily primed-PCR revealed that the genome of B. glabrata exihibits a remarkable degree of intraespecific polymorphism. Low stringency-PCR using primers for 18S rRNA permited the identification of B. glabrata, B. tenagophila and B. occidentalis. The study of individuals obtained from geographically distinct populations exhibits significant intraspecific DNA polymorphism, however specimens from the same species, exhibit some species specific LSPs. We also showed that PCR-restriction fragment of length polymorphism of the internal transcribed spacer region of Biomphalaria rDNA, using DdeI permits the differentiation of the three intermediate hosts of Schistosoma mansoni. The molecular biological techniques used in our studies are very useful for the generation of new knowledge concerning the systematics and population genetics of Biomphalaria snails.
Resumo:
The polymerase chain reaction and restriction fragment length polymorphism (RFLP) of the internal transcribed spacer (ITS) region of the rRNA gene, using the enzyme DdeI were used for the molecular identification of ten species and one subspecies of Brazilian Biomphalaria. Emphasis is given to the analysis of B. oligoza, B. schrammi and B. amazonica. The RFLP profiles obtained using this enzyme were highly distinctive for the majority of the species and exhibited low levels of intraspecific polymorphism among specimens from different regions of Brazil. However, B. peregrina and B. oligoza presented very similar profiles that complicated their identification at the molecular level and suggested a very close genetic similarity between the two species. Others enzymes including HaeIII, HpaII, AluI and MnlI were tested for their ability to differentiate these species. For B. amazonica three variant profiles produced with DdeI were observed. The study demonstrated that the ITS contains useful genetic markers for the identification of these snails
Resumo:
The evolutionary history and times of divergence of triatomine bug lineages are estimated from molecular clocks inferred from nucleotide sequences of the small subunit SSU (18S) and the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA of these reduviids. The 18S rDNA molecular clock rate in Triatominae, and Prosorrhynchan Hemiptera in general, appears to be of 1.8% per 100 million years (my). The ITS-2 molecular clock rate in Triatominae is estimated to be around 0.4-1% per 1 my, indicating that ITS-2 evolves 23-55 times faster than 18S rDNA. Inferred chronological data about the evolution of Triatominae fit well with current hypotheses on their evolutionary histories, but suggest reconsideration of the current taxonomy of North American species complexes.
Resumo:
Thanks to the phylogenetic systematics revolution, systematic parasitology is poised to make significant contributions in tropical medicine and public health, biodiversity science, and evolutionary biology. At the same time, the taxonomic impediment is acute within parasitology. Both systematists and non-systematists must be interested in working towards common goals and establishing collaborative efforts in order to re-vitalize and re-populate systematic parasitology.