89 resultados para quantiles
Resumo:
O Município de Marabá- PA, situado na região Amazônica, sudeste do Estado do Pará, sofre anualmente com eventos de enchentes, ocasionados pelo aumento periódico do rio Tocantins e pela situação de vulnerabilidade da população que reside em áreas de risco. A defesa civil estadual e municipal anualmente planeja e prepara equipes para ações de defesa no município. Nesta fase o monitoramento e previsão de eventos de enchentes são importantes. Portanto, com o objetivo de diminuir erros nas previsões hidrológicas para o Município de Marabá, desenvolveu-se um modelo estocástico para previsão de nível do rio Tocantins, baseado na metodologia de Box e Jenkins. Utilizou os dados de níveis diários observados nas estações hidrológicas de Marabá e Carolina e Conceição do Araguaia da Agência Nacional de Águas (ANA), do período de 01/12/ 2008 a 31/03/2011. Efetuou-se o ajustamento de três modelos (Mt, Nt e Yt), através de diferentes aplicativos estatísticos: o SAS e o Gretl, usando diferentes interpretações do comportamento das séries para gerar as equações dos modelos. A principal diferença entre os aplicativos é que no SAS usa o modelo de função de transferência na modelagem. Realizou-se uma classificação da variabilidade do nível do rio, através da técnica dos Quantis para o período de 1972 a 2011, examinando-se apenas as categorizações de níveis ACIMA e MUITO ACIMA do normal. Para análise de impactos socioeconômicos foram usados os dados das ações da Defesa Civil Estado do Pará nas cheias de 2009 e 2011. Os resultados mostraram que o número de eventos de cheias com níveis MUITO ACIMA do normal, geralmente, podem estar associados a eventos de La Niña. Outro resultado importante: os modelos gerados simularam muito bem o nível do rio para o período de sete dias (01/04/2011 a 07/04/2011). O modelo multivariado Nt (com pequenos erros) representou o comportamento da série original, subestimando os valores reais nos dias 3, 4 e 5 de abril de 2011, com erro máximo de 0,28 no dia 4. O modelo univariado (Yt) teve bons resultados nas simulações com erros absolutos em torno de 0,12 m. O modelo com menor erro absoluto (0,08m) para o mesmo período foi o modelo Mt, desenvolvido pelo aplicativo SAS, que interpreta a série original como sendo não linear e não estacionária. A análise quantitativa dos impactos fluviométricos, ocorridos nas enchentes de 2009 e 2011 na cidade de Marabá, revelou em média que mais de 4 mil famílias sofrem com estes eventos, implicado em gastos financeiros elevados. Logo, conclui-se que os modelos de previsão de níveis são importantes ferramentas que a Defesa Civil, utiliza no planejamento e preparo de ações preventivas para o município de Marabá.
Resumo:
This article introduces generalized beta-generated (GBG) distributions. Sub-models include all classical beta-generated, Kumaraswamy-generated and exponentiated distributions. They are maximum entropy distributions under three intuitive conditions, which show that the classical beta generator skewness parameters only control tail entropy and an additional shape parameter is needed to add entropy to the centre of the parent distribution. This parameter controls skewness without necessarily differentiating tail weights. The GBG class also has tractable properties: we present various expansions for moments, generating function and quantiles. The model parameters are estimated by maximum likelihood and the usefulness of the new class is illustrated by means of some real data sets. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
„Risikomaße in der Finanzmathematik“ Der Value-at -Risk (VaR) ist ein Risikomaß, dessen Verwendung von der Bankenaufsicht gefordert wird. Der Vorteil des VaR liegt – als Quantil der Ertrags- oder Verlustverteilung - vor allem in seiner einfachen Interpretierbarkeit. Nachteilig ist, dass der linke Rand der Wahrscheinlichkeitsverteilung nicht beachtet wird. Darüber hinaus ist die Berechnung des VaR schwierig, da Quantile nicht additiv sind. Der größte Nachteil des VaR ist in der fehlenden Subadditivität zu sehen. Deswegen werden Alternativen wie Expected Shortfall untersucht. In dieser Arbeit werden zunächst finanzielle Risikomaße eingeführt und einige ihre grundlegenden Eigenschaften festgehalten. Wir beschäftigen uns mit verschiedenen parametrischen und nichtparametrischen Methoden zur Ermittlung des VaR, unter anderen mit ihren Vorteilen und Nachteilen. Des Weiteren beschäftigen wir uns mit parametrischen und nichtparametrischen Schätzern vom VaR in diskreter Zeit. Wir stellen Portfoliooptimierungsprobleme im Black Scholes Modell mit beschränktem VaR und mit beschränkter Varianz vor. Der Vorteil des erstens Ansatzes gegenüber dem zweiten wird hier erläutert. Wir lösen Nutzenoptimierungsprobleme in Bezug auf das Endvermögen mit beschränktem VaR und mit beschränkter Varianz. VaR sagt nichts über den darüber hinausgehenden Verlust aus, während dieser von Expected Shortfall berücksichtigt wird. Deswegen verwenden wir hier den Expected Shortfall anstelle des von Emmer, Korn und Klüppelberg (2001) betrachteten Risikomaßes VaR für die Optimierung des Portfolios im Black Scholes Modell.
Resumo:
The aim of this thesis is to apply multilevel regression model in context of household surveys. Hierarchical structure in this type of data is characterized by many small groups. In last years comparative and multilevel analysis in the field of perceived health have grown in size. The purpose of this thesis is to develop a multilevel analysis with three level of hierarchy for Physical Component Summary outcome to: evaluate magnitude of within and between variance at each level (individual, household and municipality); explore which covariates affect on perceived physical health at each level; compare model-based and design-based approach in order to establish informativeness of sampling design; estimate a quantile regression for hierarchical data. The target population are the Italian residents aged 18 years and older. Our study shows a high degree of homogeneity within level 1 units belonging from the same group, with an intraclass correlation of 27% in a level-2 null model. Almost all variance is explained by level 1 covariates. In fact, in our model the explanatory variables having more impact on the outcome are disability, unable to work, age and chronic diseases (18 pathologies). An additional analysis are performed by using novel procedure of analysis :"Linear Quantile Mixed Model", named "Multilevel Linear Quantile Regression", estimate. This give us the possibility to describe more generally the conditional distribution of the response through the estimation of its quantiles, while accounting for the dependence among the observations. This has represented a great advantage of our models with respect to classic multilevel regression. The median regression with random effects reveals to be more efficient than the mean regression in representation of the outcome central tendency. A more detailed analysis of the conditional distribution of the response on other quantiles highlighted a differential effect of some covariate along the distribution.
Resumo:
The problem of estimating the numbers of motor units N in a muscle is embedded in a general stochastic model using the notion of thinning from point process theory. In the paper a new moment type estimator for the numbers of motor units in a muscle is denned, which is derived using random sums with independently thinned terms. Asymptotic normality of the estimator is shown and its practical value is demonstrated with bootstrap and approximative confidence intervals for a data set from a 31-year-old healthy right-handed, female volunteer. Moreover simulation results are presented and Monte-Carlo based quantiles, means, and variances are calculated for N in{300,600,1000}.
Resumo:
Functional neuroimaging techniques enable investigations into the neural basis of human cognition, emotions, and behaviors. In practice, applications of functional magnetic resonance imaging (fMRI) have provided novel insights into the neuropathophysiology of major psychiatric,neurological, and substance abuse disorders, as well as into the neural responses to their treatments. Modern activation studies often compare localized task-induced changes in brain activity between experimental groups. One may also extend voxel-level analyses by simultaneously considering the ensemble of voxels constituting an anatomically defined region of interest (ROI) or by considering means or quantiles of the ROI. In this work we present a Bayesian extension of voxel-level analyses that offers several notable benefits. First, it combines whole-brain voxel-by-voxel modeling and ROI analyses within a unified framework. Secondly, an unstructured variance/covariance for regional mean parameters allows for the study of inter-regional functional connectivity, provided enough subjects are available to allow for accurate estimation. Finally, an exchangeable correlation structure within regions allows for the consideration of intra-regional functional connectivity. We perform estimation for our model using Markov Chain Monte Carlo (MCMC) techniques implemented via Gibbs sampling which, despite the high throughput nature of the data, can be executed quickly (less than 30 minutes). We apply our Bayesian hierarchical model to two novel fMRI data sets: one considering inhibitory control in cocaine-dependent men and the second considering verbal memory in subjects at high risk for Alzheimer’s disease. The unifying hierarchical model presented in this manuscript is shown to enhance the interpretation content of these data sets.
Resumo:
Regional flood frequency techniques are commonly used to estimate flood quantiles when flood data is unavailable or the record length at an individual gauging station is insufficient for reliable analyses. These methods compensate for limited or unavailable data by pooling data from nearby gauged sites. This requires the delineation of hydrologically homogeneous regions in which the flood regime is sufficiently similar to allow the spatial transfer of information. It is generally accepted that hydrologic similarity results from similar physiographic characteristics, and thus these characteristics can be used to delineate regions and classify ungauged sites. However, as currently practiced, the delineation is highly subjective and dependent on the similarity measures and classification techniques employed. A standardized procedure for delineation of hydrologically homogeneous regions is presented herein. Key aspects are a new statistical metric to identify physically discordant sites, and the identification of an appropriate set of physically based measures of extreme hydrological similarity. A combination of multivariate statistical techniques applied to multiple flood statistics and basin characteristics for gauging stations in the Southeastern U.S. revealed that basin slope, elevation, and soil drainage largely determine the extreme hydrological behavior of a watershed. Use of these characteristics as similarity measures in the standardized approach for region delineation yields regions which are more homogeneous and more efficient for quantile estimation at ungauged sites than those delineated using alternative physically-based procedures typically employed in practice. The proposed methods and key physical characteristics are also shown to be efficient for region delineation and quantile development in alternative areas composed of watersheds with statistically different physical composition. In addition, the use of aggregated values of key watershed characteristics was found to be sufficient for the regionalization of flood data; the added time and computational effort required to derive spatially distributed watershed variables does not increase the accuracy of quantile estimators for ungauged sites. This dissertation also presents a methodology by which flood quantile estimates in Haiti can be derived using relationships developed for data rich regions of the U.S. As currently practiced, regional flood frequency techniques can only be applied within the predefined area used for model development. However, results presented herein demonstrate that the regional flood distribution can successfully be extrapolated to areas of similar physical composition located beyond the extent of that used for model development provided differences in precipitation are accounted for and the site in question can be appropriately classified within a delineated region.
Resumo:
Over the last decade, a plethora of computer-aided diagnosis (CAD) systems have been proposed aiming to improve the accuracy of the physicians in the diagnosis of interstitial lung diseases (ILD). In this study, we propose a scheme for the classification of HRCT image patches with ILD abnormalities as a basic component towards the quantification of the various ILD patterns in the lung. The feature extraction method relies on local spectral analysis using a DCT-based filter bank. After convolving the image with the filter bank, q-quantiles are computed for describing the distribution of local frequencies that characterize image texture. Then, the gray-level histogram values of the original image are added forming the final feature vector. The classification of the already described patches is done by a random forest (RF) classifier. The experimental results prove the superior performance and efficiency of the proposed approach compared against the state-of-the-art.
Resumo:
Using quantile regressions and cross-sectional data from 152 countries, we examine the relationship between inflation and its variability. We consider two measures of inflation - the mean and median - and three different measures of inflation variability - the standard deviation, coefficient of variation, and median deviation. Using the mean and standard deviation or the median and the median deviation, the results support both the hypothesis that higher inflation creates more inflation variability and that inflation variability raises inflation across quantiles. Moreover, higher quantiles in both cases lead to larger marginal effects of inflation (inflation variability) on inflation variability (inflation). Using the mean and the coefficient of variation, however, the findings largely support no correlation between inflation and its variability. Finally, we also consider whether thresholds for inflation rate or inflation variability exist before finding such positive correlations. We find evidence of thresholds for inflation rates below 3 percent, but mixed results for thresholds for inflation variability.
Resumo:
The performance of the Hosmer-Lemeshow global goodness-of-fit statistic for logistic regression models was explored in a wide variety of conditions not previously fully investigated. Computer simulations, each consisting of 500 regression models, were run to assess the statistic in 23 different situations. The items which varied among the situations included the number of observations used in each regression, the number of covariates, the degree of dependence among the covariates, the combinations of continuous and discrete variables, and the generation of the values of the dependent variable for model fit or lack of fit.^ The study found that the $\rm\ C$g* statistic was adequate in tests of significance for most situations. However, when testing data which deviate from a logistic model, the statistic has low power to detect such deviation. Although grouping of the estimated probabilities into quantiles from 8 to 30 was studied, the deciles of risk approach was generally sufficient. Subdividing the estimated probabilities into more than 10 quantiles when there are many covariates in the model is not necessary, despite theoretical reasons which suggest otherwise. Because it does not follow a X$\sp2$ distribution, the statistic is not recommended for use in models containing only categorical variables with a limited number of covariate patterns.^ The statistic performed adequately when there were at least 10 observations per quantile. Large numbers of observations per quantile did not lead to incorrect conclusions that the model did not fit the data when it actually did. However, the statistic failed to detect lack of fit when it existed and should be supplemented with further tests for the influence of individual observations. Careful examination of the parameter estimates is also essential since the statistic did not perform as desired when there was moderate to severe collinearity among covariates.^ Two methods studied for handling tied values of the estimated probabilities made only a slight difference in conclusions about model fit. Neither method split observations with identical probabilities into different quantiles. Approaches which create equal size groups by separating ties should be avoided. ^
Resumo:
In France, farmers commission about 250,000 soil-testing analyses per year to assist them managing soil fertility. The number and diversity of origin of the samples make these analyses an interesting and original information source regarding cultivated topsoil variability. Moreover, these analyses relate to several parameters strongly influenced by human activity (macronutrient contents, pH...), for which existing cartographic information is not very relevant. Compiling the results of these analyses into a database makes it possible to re-use these data within both a national and temporal framework. A database compilation relating to data collected over the period 1990-2009 has been recently achieved. So far, commercial soil-testing laboratories approved by the Ministry of Agriculture have provided analytical results from more than 2,000,000 samples. After the initial quality control stage, analytical results from more than 1,900,000 samples were available in the database. The anonymity of the landholders seeking soil analyses is perfectly preserved, as the only identifying information stored is the location of the nearest administrative city to the sample site. We present in this dataset a set of statistical parameters of the spatial distributions for several agronomic soil properties. These statistical parameters are calculated for 4 different nested spatial entities (administrative areas: e.g. regions, departments, counties and agricultural areas) and for 4 time periods (1990-1994, 1995-1999, 2000-2004, 2005-2009). Two kinds of agronomic soil properties are available: the firs one correspond to the quantitative variables like the organic carbon content and the second one corresponds to the qualitative variables like the texture class. For each spatial unit and temporal period, we calculated the following statistics stets: the first set is calculated for the quantitative variables and corresponds to the number of samples, the mean, the standard deviation and, the 2-,4-,10-quantiles; the second set is calculated for the qualitative variables and corresponds to the number of samples, the value of the dominant class, the number of samples of the dominant class, the second dominant class, the number of samples of the second dominant class.
Resumo:
Prediction at ungauged sites is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. Regression models relate physiographic and climatic basin characteristics to flood quantiles, which can be estimated from observed data at gauged sites. However, these models assume linear relationships between variables Prediction intervals are estimated by the variance of the residuals in the estimated model. Furthermore, the effect of the uncertainties in the explanatory variables on the dependent variable cannot be assessed. This paper presents a methodology to propagate the uncertainties that arise in the process of predicting flood quantiles at ungauged basins by a regression model. In addition, Bayesian networks were explored as a feasible tool for predicting flood quantiles at ungauged sites. Bayesian networks benefit from taking into account uncertainties thanks to their probabilistic nature. They are able to capture non-linear relationships between variables and they give a probability distribution of discharges as result. The methodology was applied to a case study in the Tagus basin in Spain.
Resumo:
La adecuada estimación de avenidas de diseño asociadas a altos periodos de retorno es necesaria para el diseño y gestión de estructuras hidráulicas como presas. En la práctica, la estimación de estos cuantiles se realiza normalmente a través de análisis de frecuencia univariados, basados en su mayoría en el estudio de caudales punta. Sin embargo, la naturaleza de las avenidas es multivariada, siendo esencial tener en cuenta características representativas de las avenidas, tales como caudal punta, volumen y duración del hidrograma, con el fin de llevar a cabo un análisis apropiado; especialmente cuando el caudal de entrada se transforma en un caudal de salida diferente durante el proceso de laminación en un embalse o llanura de inundación. Los análisis de frecuencia de avenidas multivariados han sido tradicionalmente llevados a cabo mediante el uso de distribuciones bivariadas estándar con el fin de modelar variables correlacionadas. Sin embargo, su uso conlleva limitaciones como la necesidad de usar el mismo tipo de distribuciones marginales para todas las variables y la existencia de una relación de dependencia lineal entre ellas. Recientemente, el uso de cópulas se ha extendido en hidrología debido a sus beneficios en relación al contexto multivariado, permitiendo superar los inconvenientes de las técnicas tradicionales. Una copula es una función que representa la estructura de dependencia de las variables de estudio, y permite obtener la distribución de frecuencia multivariada de dichas variables mediante sus distribuciones marginales, sin importar el tipo de distribución marginal utilizada. La estimación de periodos de retorno multivariados, y por lo tanto, de cuantiles multivariados, también se facilita debido a la manera en la que las cópulas están formuladas. La presente tesis doctoral busca proporcionar metodologías que mejoren las técnicas tradicionales usadas por profesionales para estimar cuantiles de avenida más adecuados para el diseño y la gestión de presas, así como para la evaluación del riesgo de avenida, mediante análisis de frecuencia de avenidas bivariados basados en cópulas. Las variables consideradas para ello son el caudal punta y el volumen del hidrograma. Con el objetivo de llevar a cabo un estudio completo, la presente investigación abarca: (i) el análisis de frecuencia de avenidas local bivariado centrado en examinar y comparar los periodos de retorno teóricos basados en la probabilidad natural de ocurrencia de una avenida, con el periodo de retorno asociado al riesgo de sobrevertido de la presa bajo análisis, con el fin de proporcionar cuantiles en una estación de aforo determinada; (ii) la extensión del enfoque local al regional, proporcionando un procedimiento completo para llevar a cabo un análisis de frecuencia de avenidas regional bivariado para proporcionar cuantiles en estaciones sin aforar o para mejorar la estimación de dichos cuantiles en estaciones aforadas; (iii) el uso de cópulas para investigar tendencias bivariadas en avenidas debido al aumento de los niveles de urbanización en una cuenca; y (iv) la extensión de series de avenida observadas mediante la combinación de los beneficios de un modelo basado en cópulas y de un modelo hidrometeorológico. Accurate design flood estimates associated with high return periods are necessary to design and manage hydraulic structures such as dams. In practice, the estimate of such quantiles is usually done via univariate flood frequency analyses, mostly based on the study of peak flows. Nevertheless, the nature of floods is multivariate, being essential to consider representative flood characteristics, such as flood peak, hydrograph volume and hydrograph duration to carry out an appropriate analysis; especially when the inflow peak is transformed into a different outflow peak during the routing process in a reservoir or floodplain. Multivariate flood frequency analyses have been traditionally performed by using standard bivariate distributions to model correlated variables, yet they entail some shortcomings such as the need of using the same kind of marginal distribution for all variables and the assumption of a linear dependence relation between them. Recently, the use of copulas has been extended in hydrology because of their benefits regarding dealing with the multivariate context, as they overcome the drawbacks of the traditional approach. A copula is a function that represents the dependence structure of the studied variables, and allows obtaining the multivariate frequency distribution of them by using their marginal distributions, regardless of the kind of marginal distributions considered. The estimate of multivariate return periods, and therefore multivariate quantiles, is also facilitated by the way in which copulas are formulated. The present doctoral thesis seeks to provide methodologies that improve traditional techniques used by practitioners, in order to estimate more appropriate flood quantiles for dam design, dam management and flood risk assessment, through bivariate flood frequency analyses based on the copula approach. The flood variables considered for that goal are peak flow and hydrograph volume. In order to accomplish a complete study, the present research addresses: (i) a bivariate local flood frequency analysis focused on examining and comparing theoretical return periods based on the natural probability of occurrence of a flood, with the return period associated with the risk of dam overtopping, to estimate quantiles at a given gauged site; (ii) the extension of the local to the regional approach, supplying a complete procedure for performing a bivariate regional flood frequency analysis to either estimate quantiles at ungauged sites or improve at-site estimates at gauged sites; (iii) the use of copulas to investigate bivariate flood trends due to increasing urbanisation levels in a catchment; and (iv) the extension of observed flood series by combining the benefits of a copula-based model and a hydro-meteorological model.
Resumo:
En la presente Tesis se ha llevado a cabo el contraste y desarrollo de metodologías que permitan mejorar el cálculo de las avenidas de proyecto y extrema empleadas en el cálculo de la seguridad hidrológica de las presas. En primer lugar se ha abordado el tema del cálculo de las leyes de frecuencia de caudales máximos y su extrapolación a altos periodos de retorno. Esta cuestión es de gran relevancia, ya que la adopción de estándares de seguridad hidrológica para las presas cada vez más exigentes, implica la utilización de periodos de retorno de diseño muy elevados cuya estimación conlleva una gran incertidumbre. Es importante, en consecuencia incorporar al cálculo de los caudales de diseño todas la técnicas disponibles para reducir dicha incertidumbre. Asimismo, es importante hacer una buena selección del modelo estadístico (función de distribución y procedimiento de ajuste) de tal forma que se garantice tanto su capacidad para describir el comportamiento de la muestra, como para predecir de manera robusta los cuantiles de alto periodo de retorno. De esta forma, se han realizado estudios a escala nacional con el objetivo de determinar el esquema de regionalización que ofrece mejores resultados para las características hidrológicas de las cuencas españolas, respecto a los caudales máximos anuales, teniendo en cuenta el numero de datos disponibles. La metodología utilizada parte de la identificación de regiones homogéneas, cuyos límites se han determinado teniendo en cuenta las características fisiográficas y climáticas de las cuencas, y la variabilidad de sus estadísticos, comprobando posteriormente su homogeneidad. A continuación, se ha seleccionado el modelo estadístico de caudales máximos anuales con un mejor comportamiento en las distintas zonas de la España peninsular, tanto para describir los datos de la muestra como para extrapolar a los periodos de retorno más altos. El proceso de selección se ha basado, entre otras cosas, en la generación sintética de series de datos mediante simulaciones de Monte Carlo, y el análisis estadístico del conjunto de resultados obtenido a partir del ajuste de funciones de distribución a estas series bajo distintas hipótesis. Posteriormente, se ha abordado el tema de la relación caudal-volumen y la definición de los hidrogramas de diseño en base a la misma, cuestión que puede ser de gran importancia en el caso de presas con grandes volúmenes de embalse. Sin embargo, los procedimientos de cálculo hidrológico aplicados habitualmente no tienen en cuenta la dependencia estadística entre ambas variables. En esta Tesis se ha desarrollado un procedimiento para caracterizar dicha dependencia estadística de una manera sencilla y robusta, representando la función de distribución conjunta del caudal punta y el volumen en base a la función de distribución marginal del caudal punta y la función de distribución condicionada del volumen respecto al caudal. Esta última se determina mediante una función de distribución log-normal, aplicando un procedimiento de ajuste regional. Se propone su aplicación práctica a través de un procedimiento de cálculo probabilístico basado en la generación estocástica de un número elevado de hidrogramas. La aplicación a la seguridad hidrológica de las presas de este procedimiento requiere interpretar correctamente el concepto de periodo de retorno aplicado a variables hidrológicas bivariadas. Para ello, se realiza una propuesta de interpretación de dicho concepto. El periodo de retorno se entiende como el inverso de la probabilidad de superar un determinado nivel de embalse. Al relacionar este periodo de retorno con las variables hidrológicas, el hidrograma de diseño de la presa deja de ser un único hidrograma para convertirse en una familia de hidrogramas que generan un mismo nivel máximo en el embalse, representados mediante una curva en el plano caudal volumen. Esta familia de hidrogramas de diseño depende de la propia presa a diseñar, variando las curvas caudal-volumen en función, por ejemplo, del volumen de embalse o la longitud del aliviadero. El procedimiento propuesto se ilustra mediante su aplicación a dos casos de estudio. Finalmente, se ha abordado el tema del cálculo de las avenidas estacionales, cuestión fundamental a la hora de establecer la explotación de la presa, y que puede serlo también para estudiar la seguridad hidrológica de presas existentes. Sin embargo, el cálculo de estas avenidas es complejo y no está del todo claro hoy en día, y los procedimientos de cálculo habitualmente utilizados pueden presentar ciertos problemas. El cálculo en base al método estadístico de series parciales, o de máximos sobre un umbral, puede ser una alternativa válida que permite resolver esos problemas en aquellos casos en que la generación de las avenidas en las distintas estaciones se deba a un mismo tipo de evento. Se ha realizado un estudio con objeto de verificar si es adecuada en España la hipótesis de homogeneidad estadística de los datos de caudal de avenida correspondientes a distintas estaciones del año. Asimismo, se han analizado los periodos estacionales para los que es más apropiado realizar el estudio, cuestión de gran relevancia para garantizar que los resultados sean correctos, y se ha desarrollado un procedimiento sencillo para determinar el umbral de selección de los datos de tal manera que se garantice su independencia, una de las principales dificultades en la aplicación práctica de la técnica de las series parciales. Por otra parte, la aplicación practica de las leyes de frecuencia estacionales requiere interpretar correctamente el concepto de periodo de retorno para el caso estacional. Se propone un criterio para determinar los periodos de retorno estacionales de forma coherente con el periodo de retorno anual y con una distribución adecuada de la probabilidad entre las distintas estaciones. Por último, se expone un procedimiento para el cálculo de los caudales estacionales, ilustrándolo mediante su aplicación a un caso de estudio. The compare and develop of a methodology in order to improve the extreme flow estimation for dam hydrologic security has been developed. First, the work has been focused on the adjustment of maximum peak flows distribution functions from which to extrapolate values for high return periods. This has become a major issue as the adoption of stricter standards on dam hydrologic security involves estimation of high design return periods which entails great uncertainty. Accordingly, it is important to incorporate all available techniques for the estimation of design peak flows in order to reduce this uncertainty. Selection of the statistical model (distribution function and adjustment method) is also important since its ability to describe the sample and to make solid predictions for high return periods quantiles must be guaranteed. In order to provide practical application of previous methodologies, studies have been developed on a national scale with the aim of determining a regionalization scheme which features best results in terms of annual maximum peak flows for hydrologic characteristics of Spanish basins taking into account the length of available data. Applied methodology starts with the delimitation of regions taking into account basin’s physiographic and climatic characteristics and the variability of their statistical properties, and continues with their homogeneity testing. Then, a statistical model for maximum annual peak flows is selected with the best behaviour for the different regions in peninsular Spain in terms of describing sample data and making solid predictions for high return periods. This selection has been based, among others, on synthetic data series generation using Monte Carlo simulations and statistical analysis of results from distribution functions adjustment following different hypothesis. Secondly, the work has been focused on the analysis of the relationship between peak flow and volume and how to define design flood hydrographs based on this relationship which can be highly important for large volume reservoirs. However, commonly used hydrologic procedures do not take statistical dependence between these variables into account. A simple and sound method for statistical dependence characterization has been developed by the representation of a joint distribution function of maximum peak flow and volume which is based on marginal distribution function of peak flow and conditional distribution function of volume for a given peak flow. The last one is determined by a regional adjustment procedure of a log-normal distribution function. Practical application is proposed by a probabilistic estimation procedure based on stochastic generation of a large number of hydrographs. The use of this procedure for dam hydrologic security requires a proper interpretation of the return period concept applied to bivariate hydrologic data. A standard is proposed in which it is understood as the inverse of the probability of exceeding a determined reservoir level. When relating return period and hydrological variables the only design flood hydrograph changes into a family of hydrographs which generate the same maximum reservoir level and that are represented by a curve in the peak flow-volume two-dimensional space. This family of design flood hydrographs depends on the dam characteristics as for example reservoir volume or spillway length. Two study cases illustrate the application of the developed methodology. Finally, the work has been focused on the calculation of seasonal floods which are essential when determining the reservoir operation and which can be also fundamental in terms of analysing the hydrologic security of existing reservoirs. However, seasonal flood calculation is complex and nowadays it is not totally clear. Calculation procedures commonly used may present certain problems. Statistical partial duration series, or peaks over threshold method, can be an alternative approach for their calculation that allow to solve problems encountered when the same type of event is responsible of floods in different seasons. A study has been developed to verify the hypothesis of statistical homogeneity of peak flows for different seasons in Spain. Appropriate seasonal periods have been analyzed which is highly relevant to guarantee correct results. In addition, a simple procedure has been defined to determine data selection threshold on a way that ensures its independency which is one of the main difficulties in practical application of partial series. Moreover, practical application of seasonal frequency laws requires a correct interpretation of the concept of seasonal return period. A standard is proposed in order to determine seasonal return periods coherently with the annual return period and with an adequate seasonal probability distribution. Finally a methodology is proposed to calculate seasonal peak flows. A study case illustrates the application of the proposed methodology.
Resumo:
O adoecimento de um membro familiar costuma acarretar inúmeras alterações em toda a estrutura e dinâmica familiar. Com a progressão e o agravamento da doença, quando a pessoa se encontra sem possibilidade de tratamento modificador da doença, aumenta o sofrimento tanto da pessoa adoecida quanto de sua família. O cuidador familiar de pessoas idosas em cuidados paliativos sofre junto ao enfermo, podendo enfrentar sobrecarga física, emocional e social decorrente da tarefa de cuidar e da possibilidade da morte. Entretanto, são escassos os estudos que avaliam a sobrecarga desta população. O objetivo deste estudo é identificar e analisar a percepção de sobrecarga por parte do cuidador familiar de idosos em cuidados paliativos. Trata-se de uma pesquisa do tipo transversal, exploratório, de metodologia quantitativa, não probabilística, com uma casuística total composta por 100 pessoas. Essa casuística foi estratificada de acordo com escore obtido por meio da aplicação do protocolo Karnofsky Performance Scale (KPS) com os idosos (com 60 anos ou acima) em cuidados paliativos oncológicos: um grupo com 25 cuidadores familiares de idosos com KPS abaixo de 40%; um grupo com 25 cuidadores de idosos em cuidados paliativos oncológicos com KPS de 70%, 60% ou 50%; um grupo controle com 50 cuidadores familiares de idosos em cuidados paliativos oncológicos, com KPS maior ou igual a 80%. Durante a coleta de dados, além do KPS, foram aplicados o questionário de caracterização clínica e sociodemográfica e os protocolos: Questionário de Classificação Socioeconômica Brasil e o Caregiver Burden Scale (CBScale), validado no Brasil. Para análise dos dados, foi realizada estatística descritiva e as comparações com os grupos foram feitas por meio do Teste Exato de Fisher e de um modelo de regressão quantílica. As análises foram feitas pelo software SAS 9.0 e Stata versão 13. Os resultados indicaram que os cuidadores familiares são, em sua maioria, mulheres, filhas ou esposas, de meia idade a idade mais avançada, predominantemente, na faixa etária de 56 a 71 anos, com baixa escolaridade, pertencentes a classes sociais C e que não realizam nenhuma atividade remunerada. Os maiores índices de sobrecarga foram percebidos em cuidadores do sexo feminino e em cuidadores de idosos os quais apresentam menores escores relativos à capacidade funcional (avaliados pelo KPS). Conclui-se que o agravamento da doença, o declínio funcional do idoso e a possibilidade da sua morte mais próxima fazem aumentar a sobrecarga dos cuidadores, com impactos na sua saúde e qualidade de vida, o que indica a necessidade de oferecimento de serviços de apoio a essa população o mais precocemente possível