998 resultados para proton-rich nuclei
Resumo:
In this article we perform systematic calculations on low-lying states of 33 nuclei with A=202-212, using the nucleon pair approximation of the shell model. We use a phenomenological shell-model Hamiltonian that includes single-particle energies, monopole and quadrupole pairing interactions, and quadrupole-quadrupole interactions. The building blocks of our model space include one J=4 valence neutron pair, and one J=4,6,8 valence proton pair, in addition to the usual S and D pairs. We calculate binding energies, excitation energies, electric quadrupole and magnetic dipole moments of low-lying states, and E2 transition rates between low-lying states. Our calculated results are reasonably consistent with available experimental data. The calculated quadrupole moments and magnetic moments, many of which have not yet been measured for these nuclei, are useful for future experimental measurements.
Resumo:
The proton radioactivity half-lives of spherical proton emitters are investigated within a generalized liquid drop model (GLDM), including the proximity effects between nuclei in a neck and the mass and charge asymmetry. The penetrability is calculated in the WKB approximation and the assault frequency is estimated by the quantum mechanism method considering the structure of the parent nucleus. The spectroscopic factor is taken into account in half-life calculation, which is obtained by employing the relativistic mean field (RMF) theory. The half-lives within the GLDM are compared with the experimental data and other theoretical values. The results show that the GLDM works quite well for spherical proton emitters when the assault frequency is estimated by the quantum mechanical method and the spectroscopic factor is considered.
Resumo:
We study systematically the average property of fragmentation reaction and momentum dissipation induced by halo-nuclei in intermediate energy heavy ion collisions for different colliding systems and different beam energies within the isospin dependent quantum molecular dynamics model (IQMD). This study is based on the extended halo-nucleus density distributions, which indicates the average property of loosely inner halo nucleus structure, because the interaction potential and in-medium nucleon-nucleon cross section in IQMD model depend on the density distribution. In order to study the average properties of fragmentation reaction and momentum dissipation induced by halo-nuclei we also compare the results for the halo-nuclear colliding systems with those for corresponding stable colliding systems with same mass under the same incident channel condition. We find that the effect of extended halo density distribution on the fragment multiplicity and nuclear stopping (momentum dissipation) are important for the different beam energies and different colliding systems. For example the extended halo density distributions increase the fragment multiplicity but decrease the nuclear stopping for all of incident channel conditions in this paper.
Resumo:
Using a shell model which is capable of describing the spectra of upper g(9/2)-shell nuclei close to the N = Z line, we study the structure of two isomeric states 7(+) and 21(+) in the odd-odd N = Z nucleus Ag-94. It is found that both isomeric states exhibit a large collectivity. The 7(+) state is oblately deformed, and is suggested to be a shape isomer in nature. The 21(+) state becomes isomeric because of level inversion of the 19(+) and 21(+) states due to core excitations across the N = Z = 50 shell gap. Calculation of spectroscopic quadrupole moment indicates clearly an enhancement in these states due to the core excitations. However, the present shell model calculation that produces the 19(+)-21(+) level inversion cannot accept the large-deformation picture of Mukha et al.
Resumo:
The structure of neutron-rich Cr isotopes is systematically investigated by using the spherical shell model. The calculations reproduce well the known energy levels for the even-even Cr52-62 and odd-mass Cr53-59 nuclei, and predict a lowering of excitation energies around neutron number N = 40. The calculated B(E2; 2(1)(+) -> 0(1)(+)) systematics shows a pronounced collectivity around N = 40; a similar characteristic behavior has been suggested for Zn and Ge isotopes. Causes for the sudden drop of the 9/2(1)(+) energy in Cr-59 and the appearance of very low 0(2)(+) states around N = 40 are discussed. We also predict a new band with strong collectivity built on the 0(2)(+) state in the N = 40 isotope Cr-64.
Resumo:
The dinuclear model of the formation mechanism of a superheavy compound nucleus assumes that when all nucleons of the projectile have been transferred in to the target nucleus the compound nucleus is formed. The nucleon transfer is determined by the driving potential. For some reaction channels, the relation between nucleon transfer and the evolution path of the neutron/proton ratio is rather complicated. In principle, both the dynamical equation and the driving potential should be a twodimensional explicit function of the neutron and proton. For the sake of simplicity we calculated the driving potential by choosing the path of the nucleon transfer which is related to the nutron/proton ratio, and the calculated evaporation residue cross-sections to synthesize the superheavy nuclei are much closer to the experimental data
Resumo:
Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus, and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118, and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.
Resumo:
We study the average property of the isospin effect of reaction induced by halo-neutron nuclei He-8 and He-10 in the intermediate energy heavy ion collisions using the isospin-dependent quantum molecular dynamics model (IQMD). This study is based on the extended neutron density distribution for the halo-neutron nuclei, which includes the average property of the isospin effect-of reaction mechanism and loose inner structure. The extended neutron density distribution brings an important isospin. effect into the average property of reaction mechanism because the interaction potential and nucleon-nucleon(N-N) cross section in IQMD model depend sensitively on the density distribution of colliding system. In order to see clearly the average properties of reaction mechanism induced by halo-neutron nuclei we also compare the results for the neutron-halo colliding systems with those for the corresponding stable colliding systems under the same incident channel condition. We found that the extended density distribution for the neutron-halo projectile brings an important isospin effect to the reaction mechanism, which leads to the decrease of nuclear stopping R, yet induces obvious increase of the neutron-proton ratio of nucleon emissions and isospin fractionation ratio for all beam energies studied in this work, compared to the corresponding stable colliding system. In this case, nuclear stopping, the neutron-proton ratio of nucleon emissions and isospin fractionation ratio induced by halo-neutron nuclei can be used as possible probes for studying the average property of the isospin effect of reaction mechanism and extracting the information of symmetry potential and in-medium N-N cross section by the neutron-halo nuclei in heavy ion collisions.
Resumo:
In terms of the isospin-dependent quantum molecular dynamics model (IQMD), important isospin effect in the halo-neutron nucleus induced reaction mechanism is. investigated, and consequently, the symmetrical potential form is extracted in the intermediate energy heavy ion collision. Because the interactive potential and in-medium nucleon-nucleon (N-N) cross section in the IQMD model sensitively depend on the density distribution of the colliding system, this type of study is much more based on the extended density distribution with a looser inner nuclear structure of the halo-neutron nucleus. Such a density distribution includes averaged characteristics of the isospin effect of the reaction mechanism and the looser inner nuclear structure. In order to understand clearly the isospin effect of the halo-neutron nucleus induced reaction mechanism, the effects caused by the neutron-halo nucleus and by the stable nucleus with the same mass are compared under the same condition of the incident channel. It is found that in the concerned beam energy region, the ratio of the emitted neutrons and protons and the ratio of the isospin fractionations in the neutron-halo nucleus case are considerably larger than those in the stable nucleus case. Therefore, the information of the symmetry potential in the heavy ion collision can be extracted through such a procedure.
Resumo:
The history of experimental study on beta-delayed proton decays in the rare-earth region was simply reviewed. The physical results of the beta-delayed proton decays obtained at IMP, Lanzhou over the last 10 years were summarized, mainly including the first observation of 9 new beta-delayed proton precursors along the odd-Z proton drip line and the new data for 2 waiting-point nuclei in the rp-process. The results were compared and discussed with different nuclear model calculations. Finally, the perspective in near future was briefly introduced.
Resumo:
A density-dependent delta interaction (DDDI) is proposed in the formalism of BCS-type pairing correlations for exotic nuclei whose Fermi surfaces are close to the threshold of the unbound state. It provides the possibility to pick up those states whose wave functions are concentrated in the nuclear region by making the pairing matrix elements state dependent. On this basis, the energy level distributions, occupations, and ground-state properties are self-consistently studied in the RMF theory with deformation. Calculations are performed for the Sr isotopic chain. A good description of the total energy per nucleon, deformations, two-neutron separation energies and isotope shift from the proton drip line to the neutron drip line is found. Especially, by comparing the single-particle structure from the DDDI pairing interaction with that from the constant pairing interaction for a very neutron-rich nucleus it is demonstrated that the DDDI pairing method improves the treatment of the pairing in the continuum.
Resumo:
Sm-133 was produced via fusion evaporation in the reaction Ca-40+Ru-96. Its P-delayed proton decay was studied by means of "p-gamma" coincidence in combination with a He-jet tape transport system, including half-lives, proton energy spectra, gamma-transitions following the proton emissions, and the branching ratios to the low-lying states in the grand-daughter nuclei. The possible spins and parities of 133Sm were extracted by fitting the experimental data with a statistical model calculation. The configuration-constrained nuclear potential energy surfaces of Sm-133 were calculated by using the Woods-Saxon Strutinsky method. Comparing the experimental and calculated results, the spins and parities Of Sm-133 were assigned to be 5/2(+) and 1/2(-), which is reconciled with our published simple (EC+beta(+)) decay scheme Of Sm-113 in 2001. In addition, our experimental data on the beta-delayed proton decay of Yb-149 reported in Eur. Phys. J., 2001, A12: 1-4 was also analyzed by using the same method. The spin and parity of Yb-149 was assigned to be 1/2-.
Resumo:
We study the average property of the isospin effects of reaction mechanism induced by neutron-halo nuclei within the isospin-dependent quantum molecular dynamics model. We find that the extended neutron density distribution for the neutron-halo projectile brings an important isospin effect into the reaction mechanism, which induces the decrease of nuclear stopping R; however, it induces the obvious increases of the neutron-proton ratio of nucleon emissions (n/p)(nucl) for all of the beam energies in this work, compared to the same mass stable colliding system.
Resumo:
We extend the Brueckner-Hartree-Fock (BHF) approach to include the three-body force (TBF) rearrangement contribution in calculating the neutron and proton single particle (s.p.) properties in isospin asymmetric nuclear matter. We investigate the TBF rearrangement effect on the momentum-dependence of neutron and proton s.p. potentials, the isospin splitting and especially its density dependence of the neutron and proton effective masses, and the isospin symmetry potential in neutron-rich nuclear matter by adopting the realistic Argonne V-18 two-body nucleon-nucleon interaction supplemented with a microscopic TBF. We find that at low densities, the TBF rearrangement effect is fairly weak, whereas the TBF induces a significant rearrangement effect on the s.p. properties at high densities and large momenta. The TBF rearrangement contribution to s.p. potential is shown to be repulsive, and it reduces considerably the attraction of the BHF s.p. potential. The repulsion from the TBF rearrangement turns out to be strongly momentum dependent at high densities and high momenta. As a consequence, it enhances remarkably the momentum dependence of the proton and neutron s.p. potentials and reduces the neutron and proton effective masses. At low densities, the TBF rearrangement effect on symmetry potential is almost negligible, while at high densities, it enlarges sizably the symmetry potential. At high enough densities, it may even change the high-momentum behavior of symmetry potential. In both cases, with and without including the TBF rearrangement contribution, the predicted neutron effective mass is larger than the proton one in neutron-rich matter within the BHF framework; i.e., the predicted isospin splitting of the proton and neutron effective masses in neutron-rich matter is such that m(n)(*)>= m(p)(*), in agreement with the recent Dirac-BHF predictions. The TBF rearrangement contribution reduces remarkably the magnitude of the proton-neutron effective mass splitting at high densities. At high enough densities, inclusion of the TBF rearrangement contribution even suppresses almost completely the effective mass splitting.
Resumo:
Tb-140 and Dy-141 were produced via fusion evaporation in the reaction Ca-40+Cd-106. Their beta-delayed proton decays were studied by means of "p-gamma" coincidence in combination with a He-jet tape transport system, including half-lives, proton energy spectra, gamma-transitions following the proton emissions, and the branching ratios to the low-lying states in the grand-daughter nuclei. The ground-state spins and parities of Tb-140 and Dy-141 were extracted as 7(+/-) and 9/2(+/-), respectively, by fitting the experimental data with a statistical model calculation. The configuration-constrained nuclear potential energy surfaces (NPES) of Tb-140 and Dy-141 were calculated by using the Woods-Saxon Strutinsky method, which indicate the ground-state spins and parities of Tb-140 and Dy-147 to be 7(+) and 9/2(-), respectively. In addition, the configuration-constrained NPES of Dy-143 was also calculated by using the same method. From the NPES a 1/2(+) ground state and a 11/2(-) isomer with the excitation energy of 198keV were found. The calculated results are consistent with our experimental data on the decay of Dy-143 reported in Eur. Phys. J., 2003, A16: 347-351.