780 resultados para project decision-making
Resumo:
The most important factor that affects the decision making process in finance is the risk which is usually measured by variance (total risk) or systematic risk (beta). Since investors’ sentiment (whether she is an optimist or pessimist) plays a very important role in the choice of beta measure, any decision made for the same asset within the same time horizon will be different for different individuals. In other words, there will neither be homogeneity of beliefs nor the rational expectation prevalent in the market due to behavioral traits. This dissertation consists of three essays. In the first essay, “ Investor Sentiment and Intrinsic Stock Prices”, a new technical trading strategy was developed using a firm specific individual sentiment measure. This behavioral based trading strategy forecasts a range within which a stock price moves in a particular period and can be used for stock trading. Results indicate that sample firms trade within a range and give signals as to when to buy or sell. In the second essay, “Managerial Sentiment and the Value of the Firm”, examined the effect of managerial sentiment on the project selection process using net present value criterion and also effect of managerial sentiment on the value of firm. Final analysis reported that high sentiment and low sentiment managers obtain different values for the same firm before and after the acceptance of a project. Changes in the cost of capital, weighted cost of average capital were found due to managerial sentiment. In the last essay, “Investor Sentiment and Optimal Portfolio Selection”, analyzed how the investor sentiment affects the nature and composition of the optimal portfolio as well as the portfolio performance. Results suggested that the choice of the investor sentiment completely changes the portfolio composition, i.e., the high sentiment investor will have a completely different choice of assets in the portfolio in comparison with the low sentiment investor. The results indicated the practical application of behavioral model based technical indicator for stock trading. Additional insights developed include the valuation of firms with a behavioral component and the importance of distinguishing portfolio performance based on sentiment factors.
Resumo:
The most important factor that affects the decision making process in finance is the risk which is usually measured by variance (total risk) or systematic risk (beta). Since investors' sentiment (whether she is an optimist or pessimist) plays a very important role in the choice of beta measure, any decision made for the same asset within the same time horizon will be different for different individuals. In other words, there will neither be homogeneity of beliefs nor the rational expectation prevalent in the market due to behavioral traits. This dissertation consists of three essays. In the first essay, Investor Sentiment and Intrinsic Stock Prices, a new technical trading strategy is developed using a firm specific individual sentiment measure. This behavioral based trading strategy forecasts a range within which a stock price moves in a particular period and can be used for stock trading. Results show that sample firms trade within a range and show signals as to when to buy or sell. The second essay, Managerial Sentiment and the Value of the Firm, examines the effect of managerial sentiment on the project selection process using net present value criterion and also effect of managerial sentiment on the value of firm. Findings show that high sentiment and low sentiment managers obtain different values for the same firm before and after the acceptance of a project. The last essay, Investor Sentiment and Optimal Portfolio Selection, analyzes how the investor sentiment affects the nature and composition of the optimal portfolio as well as the performance measures. Results suggest that the choice of the investor sentiment completely changes the portfolio composition, i.e., the high sentiment investor will have a completely different choice of assets in the portfolio in comparison with the low sentiment investor. The results indicate the practical application of behavioral model based technical indicators for stock trading. Additional insights developed include the valuation of firms with a behavioral component and the importance of distinguishing portfolio performance based on sentiment factors.
Resumo:
Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, non-integrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. ^ A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. ^ One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects. ^
Resumo:
Infrastructure management agencies are facing multiple challenges, including aging infrastructure, reduction in capacity of existing infrastructure, and availability of limited funds. Therefore, decision makers are required to think innovatively and develop inventive ways of using available funds. Maintenance investment decisions are generally made based on physical condition only. It is important to understand that spending money on public infrastructure is synonymous with spending money on people themselves. This also requires consideration of decision parameters, in addition to physical condition, such as strategic importance, socioeconomic contribution and infrastructure utilization. Consideration of multiple decision parameters for infrastructure maintenance investments can be beneficial in case of limited funding. Given this motivation, this dissertation presents a prototype decision support framework to evaluate trade-off, among competing infrastructures, that are candidates for infrastructure maintenance, repair and rehabilitation investments. Decision parameters' performances measured through various factors are combined to determine the integrated state of an infrastructure using Multi-Attribute Utility Theory (MAUT). The integrated state, cost and benefit estimates of probable maintenance actions are utilized alongside expert opinion to develop transition probability and reward matrices for each probable maintenance action for a particular candidate infrastructure. These matrices are then used as an input to the Markov Decision Process (MDP) for the finite-stage dynamic programming model to perform project (candidate)-level analysis to determine optimized maintenance strategies based on reward maximization. The outcomes of project (candidate)-level analysis are then utilized to perform network-level analysis taking the portfolio management approach to determine a suitable portfolio under budgetary constraints. The major decision support outcomes of the prototype framework include performance trend curves, decision logic maps, and a network-level maintenance investment plan for the upcoming years. The framework has been implemented with a set of bridges considered as a network with the assistance of the Pima County DOT, AZ. It is expected that the concept of this prototype framework can help infrastructure management agencies better manage their available funds for maintenance.
Resumo:
Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, nonintegrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects.
Resumo:
The use of computing to support environmental planning and the development of land use models dates back to the late 1950s. The main thrust of computing applications, which by the early 1980s increasingly included the use of geospatial technologies, is their contribution to better planning and decision making. The computing tools and technologies are designed to enhance the planners’ capability to deal with complex environments and to plan for prosperous and livable communities. This paper examines the role of Information Technologies (IT) and particularly Internet Based Geographic Information Systems (Internet GIS) as spatial decision support systems to aid community based local decision making. The paper also covers the advantages and challenges of these internet based mapping applications and tools for collaborative decision making on the environment.
Resumo:
Since the industrial revolution, our world has experienced rapid and unplanned industrialization and urbanization. As a result, we have had to cope with serious environmental challenges. In this context, explanation of how smart urban ecosystems can emerge, gains a crucial importance. Capacity building and community involvement have always been the key issues in achieving sustainable development and enhancing urban ecosystems. By considering these, this paper looks at new approaches to increase public awareness of environmental decision making. This paper will discuss the role of Information and Communication Technologies (ICT), particularly Web-based Geographic Information Systems (Web-based GIS) as spatial decision support systems to aid public participatory environmental decision making. The paper also explores the potential and constraints of these web-based tools for collaborative decision making.
Resumo:
The Melbourne Decision Making Questionnaire (Mann, Burnett, Radford, & Ford, 1997) measures selfreported decision-making coping patterns. The questionnaire was administered to samples of University students in the US (N = 475), Australia (N = 262), New Zealand (N = 260), Japan (N = 359), Hong Kong (N = 281), and Taiwan (N = 414). As predicted, students from the three Western, individualistic cultures (US, Australia, and New Zealand) were more con® dent of their decision-making ability than students from the three East Asian, group-oriented cultures (Japan, Hong Kong, Taiwan). No cross-cultural differences were found in scores on decision vigilance (a careful decision-making style). However, compared with Western students, the Asian students tended to score higher on buck-passing and procrastination (avoidant styles of decision making) as well as hypervigilance (a panicky style of decision making). Japanese students scored lowest on decision self-esteem and highest on procrastination and hypervigilance. It was argued that the con¯ ict model and its attendant coping patterns is relevant for describing and comparing decision making in both Western and Asian cultures.
Resumo:
A study was conducted to examine the factorial validity of the Flinders Decision Making Questionnaire (Mann, 1982), a 31-item self-report inventory designed to measure tendencies to use three major coping patterns identified in the conflict theory of decision making (Janis and Mann, 1977): vigilance, hypervigilance, and defensive avoidance (procrastination, buck-passing, and rationalization). A sample of 2051 university students, comprising samples from Australia (n=262), New Zealand (n=260), the USA (n=475), Japan (n=359), Hong Kong (n=281) and Taiwan (n=414) was administered the DMQ. Factorial validity of the instrument was tested by confirmatory factor analysis with LISREL. Five different substantive models, representing different structural relationships between the decision-coping patterns had unsatisfactory fit to the data and could not be validated. A shortened instrument, containing 22 items, yielded a revised model comprising four identifiable factors-vigilance, hypervigilance, buck-passing, and procrastination. The revised model had adequate fit with data for each country sample and for the total sample, and was confirmed. It is recommended that the 22-item instrument, named the Melbourne DMQ, replace the Flinders DMQ for measurement of decision-coping patterns.