859 resultados para probabilistic skepticism
Resumo:
This paper proposes a pose-based algorithm to solve the full SLAM problem for an autonomous underwater vehicle (AUV), navigating in an unknown and possibly unstructured environment. The technique incorporate probabilistic scan matching with range scans gathered from a mechanical scanning imaging sonar (MSIS) and the robot dead-reckoning displacements estimated from a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method utilizes two extended Kalman filters (EKF). The first, estimates the local path travelled by the robot while grabbing the scan as well as its uncertainty and provides position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augment state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach
Resumo:
This study aimed to describe the probabilistic structure of the annual series of extreme daily rainfall (Preabs), available from the weather station of Ubatuba, State of São Paulo, Brazil (1935-2009), by using the general distribution of extreme value (GEV). The autocorrelation function, the Mann-Kendall test, and the wavelet analysis were used in order to evaluate the presence of serial correlations, trends, and periodical components. Considering the results obtained using these three statistical methods, it was possible to assume the hypothesis that this temporal series is free from persistence, trends, and periodicals components. Based on quantitative and qualitative adhesion tests, it was found that the GEV may be used in order to quantify the probabilities of the Preabs data. The best results of GEV were obtained when the parameters of this function were estimated using the method of maximum likelihood. The method of L-moments has also shown satisfactory results.
Resumo:
Tässä diplomityössä tehtiin Olkiluodon ydinvoimalaitoksella sijaitsevan käytetyn ydinpolttoaineen allasvarastointiin perustuvan välivaraston todennäköisyysperustainen ulkoisten uhkien riskianalyysi. Todennäköisyysperustainen riskianalyysi (PRA) on yleisesti käytetty riskien tunnistus- ja lähestymistapa ydinvoimalaitoksella. Työn tarkoituksena oli laatia täysin uusi ulkoisten uhkien PRA-analyysi, koska Suomessa ei ole aiemmin tehty vastaavanlaisia tämän tutkimusalueen riskitarkasteluja. Riskitarkastelun motiivina ovat myös maailmalla tapahtuneiden luonnonkatastrofien vuoksi korostunut ulkoisten uhkien rooli käytetyn ydinpolttoaineen välivarastoinnin turvallisuudessa. PRA analyysin rakenne pohjautui tutkimuksen alussa luotuun metodologiaan. Analyysi perustuu mahdollisten ulkoisten uhkien tunnistamiseen pois lukien ihmisen aikaansaamat tahalliset vahingot. Tunnistettujen ulkoisten uhkien esiintymistaajuuksien ja vahingoittamispotentiaalin perusteella ulkoiset uhat joko karsittiin pois tutkimuksessa määriteltyjen karsintakriteerien avulla tai analysoitiin tarkemmin. Tutkimustulosten perusteella voitiin todeta, että tiedot hyvin harvoin tapahtuvista ulkoisista uhista ovat epätäydellisiä. Suurinta osaa näistä hyvin harvoin tapahtuvista ulkoisista uhista ei ole koskaan esiintynyt eikä todennäköisesti koskaan tule esiintymään Olkiluodon vaikutusalueella tai edes Suomessa. Esimerkiksi salaman iskujen ja öljyaltistuksen roolit ja vaikutukset erilaisten komponenttien käytettävyyteen ovat epävarmasti tunnettuja. Tutkimuksen tuloksia voidaan pitää kokonaisuudessaan merkittävinä, koska niiden perusteella voidaan osoittaa ne ulkoiset uhat, joiden vaikutuksia olisi syytä tutkia tarkemmin. Yksityiskohtaisempi tietoisuus hyvin harvoin esiintyvistä ulkoisista uhista tarkentaisi alkutapahtumataajuuksien estimaatteja.
Resumo:
Modeller för intermolekulär växelvärkan utnyttjas brett inom biologin. Analys av kontakter mellan proteiner och läkemedelsforskning representerar typiska tillämpningsområden för dylika modeller. En modell som beskriver sådana molekylära växelverkningar kan utformas med hjälp av biofysisk teori, vilket tenderar att resultera i ytterst tung beräkningsbörda även för enkla tillämpningar. Ett alternativt sätt att formulera modeller är att utnyttja stora databaser som innehåller strukturmätningar gjorda med hjälp av till exempel röntgendiffraktion. Då man använder sig av empiriska mätdata direkt, möjliggör en statistisk modell att osäkerheten och inexaktheten i datat tas till hänsyn på ett adekvat sätt, samtidigt som beräkningsbördan håller sig på en rimligare nivå jämfört med kvantmekaniska metoder som i princip borde ge de optimala resultaten. I avhandlingen utvecklades en 3D modell för numerisk undersökning av intermolekulär växelverkan baserad på Bayesiansk statistik. Modellens syfte är att åstadkomma prognoser för det hurdana eller vilka molekylstrukturer prefereras i en given kontext, d.v.s. är mer sannolika inom ramen för interaktion. Modellen testades i essentiella molekyläromgivningar - en liten molekyl vid sin bindningsplats hos ett protein och en gränsyta mellan proteinerna i ett komplex. De erhållna numeriska resultaten motsvarar väl experimentella resultat som tidigare rapporterats i litteraturen, exempelvis kvalitativa bindningsaffiniteter och kemisk kännedom av vissa aminosyrors rumsliga förmågor att utgöra bindningar. I avhandlingen gjordes ytterligare preliminära tester av den statistiska ansatsen för modellering av den centrala molekylära strukturella anpassningsbarheten. I praktiken är den utvecklade modellen ämnad som ett led i en mer omfattande analysmetod, så som en s.k. farmakofor modell. Molekyylivuorovaikutusten mallintamista hyödynnetään laajasti biologisten kysymysten tarkastelussa. Tyypillisiä esimerkkejä sovelluskohteista ovat proteiinien väliset kontaktit ja lääkesuunnittelu. Vuorovaikutuksia kuvaavan mallin lähtökohta voi olla molekyyleihin liittyvä teoria, jolloin soveltamiseen liittyvä laskenta saattaa olla erityisen raskasta, tai suuri havaintojoukko joka on saatu aikaan esimerkiksi mittaamalla rakenteita röntgendiffraktio menetelmällä. Tilastollinen malli mahdollistaa havaintoaineistossa olevan epätarkkuuden ja epävarmuuden huomioimisen, samalla pitäen laskennallisen kuorman pienempänä verrattuna periaatteessa parhaan tuloksen antavaan kvanttimekaaniseen mallinnukseen. Väitöstyössä kehitettiin bayesiläiseen tilastotieteeseen perustuva 3D malli molekyylien välisten vuorovaikutusten laskennalliseen tarkasteluun. Mallin tehtävä on tuottaa ennusteita sen suhteen, minkä tai millaisten molekyylirakenteiden väliset kompleksit ovat etusijalla, toisin sanoen todennäköisempiä, vuorovaikutustilanteessa. Työssä kehitetyn menetelmän toimivuutta testattiin käyttötarkoituksen suhteen olennaisissa molekyyliympäristöissä - pieni molekyyli sitoutumiskohdassaan proteiinissa sekä rajapinta kahden proteiinin välilllä proteiinikompleksissa. Saadut laskennalliset tulokset vastasivat hyvin vertailuun käytettyjä kirjallisuudesta saatuja kokeellisia tuloksia, kuten laadullisia sitoutumisaffiniteetteja, sekä kemiallista tietoa esimerkiksi tiettyjen aminohappojen avaruudellisesta sidoksenmuodostuksesta. Väitöstyössä myös alustavasti testattiin tilastollista lähestymistapaa tärkeän molekyylien rakenteellisen mukautuvuuden mallintamiseen. Käytännössä malli on tarkoitettu osaksi jotakin laajempaa analyysimenetelmää, kuten farmakoforimallia.
Resumo:
The recent emergence of low-cost RGB-D sensors has brought new opportunities for robotics by providing affordable devices that can provide synchronized images with both color and depth information. In this thesis, recent work on pose estimation utilizing RGBD sensors is reviewed. Also, a pose recognition system for rigid objects using RGB-D data is implemented. The implementation uses half-edge primitives extracted from the RGB-D images for pose estimation. The system is based on the probabilistic object representation framework by Detry et al., which utilizes Nonparametric Belief Propagation for pose inference. Experiments are performed on household objects to evaluate the performance and robustness of the system.
Resumo:
One of the most important problems in the theory of cellular automata (CA) is determining the proportion of cells in a specific state after a given number of time iterations. We approach this problem using patterns in preimage sets - that is, the set of blocks which iterate to the desired output. This allows us to construct a response curve - a relationship between the proportion of cells in state 1 after niterations as a function of the initial proportion. We derive response curve formulae for many two-dimensional deterministic CA rules with L-neighbourhood. For all remaining rules, we find experimental response curves. We also use preimage sets to classify surjective rules. In the last part of the thesis, we consider a special class of one-dimensional probabilistic CA rules. We find response surface formula for these rules and experimental response surfaces for all remaining rules.
Resumo:
We consider a probabilistic approach to the problem of assigning k indivisible identical objects to a set of agents with single-peaked preferences. Using the ordinal extension of preferences, we characterize the class of uniform probabilistic rules by Pareto efficiency, strategy-proofness, and no-envy. We also show that in this characterization no-envy cannot be replaced by anonymity. When agents are strictly risk averse von-Neumann-Morgenstern utility maximizers, then we reduce the problem of assigning k identical objects to a problem of allocating the amount k of an infinitely divisible commodity.
Resumo:
With the help of an illustrative general equilibrium (CGE) model of the Moroccan Economy, we test for the significance of simulation results in the case where the exact macromesure is not known with certainty. This is done by computing lower and upper bounds for the simulation resukts, given a priori probabilities attached to three possible closures (Classical, Johansen, Keynesian). Our Conclusion is that, when there is uncertainty on closures several endogenous changes lack significance, which, in turn, limit the use of the model for policy prescriptions.
Resumo:
In this thesis we attempt to make a probabilistic analysis of some physically realizable, though complex, storage and queueing models. It is essentially a mathematical study of the stochastic processes underlying these models. Our aim is to have an improved understanding of the behaviour of such models, that may widen their applicability. Different inventory systems with randon1 lead times, vacation to the server, bulk demands, varying ordering levels, etc. are considered. Also we study some finite and infinite capacity queueing systems with bulk service and vacation to the server and obtain the transient solution in certain cases. Each chapter in the thesis is provided with self introduction and some important references
Resumo:
In this paper we address the problem of face detection and recognition of grey scale frontal view images. We propose a face recognition system based on probabilistic neural networks (PNN) architecture. The system is implemented using voronoi/ delaunay tessellations and template matching. Images are segmented successfully into homogeneous regions by virtue of voronoi diagram properties. Face verification is achieved using matching scores computed by correlating edge gradients of reference images. The advantage of classification using PNN models is its short training time. The correlation based template matching guarantees good classification results
Resumo:
n this paper we address the problem of face detection and recognition of grey scale frontal view images. We propose a face recognition system based on probabilistic neural networks (PNN) architecture. The system is implemented using voronoi/ delaunay tessellations and template matching. Images are segmented successfully into homogeneous regions by virtue of voronoi diagram properties. Face verification is achieved using matching scores computed by correlating edge gradients of reference images. The advantage of classification using PNN models is its short training time. The correlation based template matching guarantees good classification results.