911 resultados para preparation of drugs
Resumo:
Lithium amalgam is useful in effecting Wurtz type intramolecular and intermolecular coupling reactions.
Resumo:
RECENT work on the lower oxide of sulphur1,2 has established that disulphur monoxide (S2O) or its polymeric form is produced when sulphur is burnt in oxygen under reduced pressure. It has now been shown that it is possible to make use of an oxide of a heavy metal as a source of limited supply of oxygen to prepare the disulphur monoxide. For example, when a mixture of finely powdered cupric oxide and sulphur (1 : 5 by weight) is heated under vacuum in a glass tube gaseous products are evolved. which, on cooling in a trap surrounded by liquid air, will give an orange-red condensate (S2O)x. This condensate also gives off sulphur dioxide in stages as the temperature is raised, finally leaving a residue of elemental sulphur. Copper sulphide and excess of sulphur are left behind in the reaction tube.
Resumo:
A comparatively simple and rapid method for the identification, estimation and preparation of fatty acids has been developed, using reversed phase circular paper chromatography. The method is also suitable for the analysis of “Critical Pairs” of fatty acids and for the preparation of fatty acids. Further, when used at a higher temperature, the method is more sensitive in revealing the presence of even traces of higher fatty acids in the seeds of Adenanthera pavonina.
Resumo:
Nanoplate LiFePO4 is synthesized by a polyol route starting from only two reactants, namely, FePO4 and LiOH. The crystalline compound forms by refluxing a tetraethylene glycol solution consisting of FePO4 and LiOH at 335 degrees C without further heating of the reaction product.The nanoplates have average dimensions of 30 nm width and 160 nm length, as measured from transmission electron microscopy micrographs.The surface area of the LiFePO4 sample is 38 m(2) g(-1). Also, the sample is porous with a broadly distributed pore around 50 nm. The electrodes fabricated out of the nanoplate of LiFePO4 exhibit a high electrochemical activity. Discharge capacity values measured are 160 and 100 mAh g(-1) at 0.15C and 3.45C, respectively. A stable capacity of about 155 mAh g(-1) is measured at 0.2C over a 50 charge-discharge cycle. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3425730] All rights reserved.
Resumo:
Ammonium and alkali metal tetrafluoroborates have been prepared by the cation exchange reaction of pyridinium tetrafluoroborate with the corresponding hydroxides/halides. The reaction of pyridinium tetrafluoroborate with primary, secondary and tertiary alkyl amines at room temperature gives rise to mono-, di- and tri-alkylammonium tetrafluoroborates, respectively. The yields are good and the samples are of high purity. The products have been characterised by elemental analysis, IR and PMR spectroscopy. The spectral data for most of the compounds are reported for the first time.
Resumo:
Silver salts of hexafluorophosphates, tetrafluoro-borates and hexafluorosilicates have been prepared by a metathetic reaction between the respective ammonium salts and silver nitrate in acetonitrile medium. This one step procedure at room temperature offers salts of high purity in good yields. The salts (AgpF6, AgBF4 and Ag2SiF6) have been characterised by IR spectral data analysis and chemical analysis.
Resumo:
A simple and efficient two-step hybrid electrochemical-thermal route was developed for the synthesis of large quantity of ZnO nanoparticles using aqueous sodium bicarbonate electrolyte and sacrificial Zn anode and cathode in an undivided cell under galvanostatic mode at room temperature. The bath concentration and current density were varied from 30 to 120 mmol and 0.05 to 1.5 A/dm(2). The electrochemically generated precursor was calcined for an hour at different range of temperature from 140 to 600 A degrees C. The calcined samples were characterized by XRD, SEM/EDX, TEM, TG-DTA, FT-IR, and UV-Vis spectral methods. Rietveld refinement of X-ray data indicates that the calcined compound exhibits hexagonal (Wurtzite) structure with space group of P63mc (No. 186). The crystallite sizes were in the range of 22-75 nm based on Debye-Scherrer equation. The TEM results reveal that the particle sizes were in the order of 30-40 nm. The blue shift was noticed in UV-Vis absorption spectra, the band gaps were found to be 5.40-5.11 eV. Scanning electron micrographs suggest that all the samples were randomly oriented granular morphology.
Resumo:
It has been observed that a suspension of sodium fluoride in boiling acetonitrile could be used for the preparation of fluorine compounds such as silicon tetrafluoride [1], thiophosphoryl fluoride [2], sulphur tetrafluoride [3,4], and fluorocyclophosphazenes [5]. This method, when adopted for the fluorination of sulphuryl chloride [6], it is observed that a mixture of sulphuryl fluoride and sulphuryl chloro fluoride is obtained. On the other hand, when lead fluoride is substituted for sodium fluoride, pure sulphuryl chloro fluoride is evolved. Based on this observation, a new method has been standardised for the preparation of a pure sample of sulphuryl chlorofluoride by fluorinating sulphuryl chloride by lead fluoride in acetonitrile medium.
Resumo:
The method for the purification of goat serum retinol-binding protein consists of DEAE-cellulose chromatography of the serum followed by preparative polyacrylamide disc gel electrophoresis. After electrophoresis, the retinol-binding protein containing zone is identified by the specific fluorescence of retinol. For raising the antibodies, the portion of the gel containing retinol binding protein is homogenized and injected intradermally and intramuscularly to rabbits. The availability of this simple method for the isolation of retinol-binding protein and production of its antibodies enables the development of a radioimmunoassay for this protein.