960 resultados para predispersal seed predation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural regeneration is an ecological key-process that makes plant persistence possible and, consequently, it constitutes an essential element of sustainable forest management. In this respect, natural regeneration in even-aged stands of Pinus pinea L. located in the Spanish Northern Plateau has not always been successfully achieved despite over a century of pine nut-based management. As a result, natural regeneration has recently become a major concern for forest managers when we are living a moment of rationalization of investment in silviculture. The present dissertation is addressed to provide answers to forest managers on this topic through the development of an integral regeneration multistage model for P. pinea stands in the region. From this model, recommendations for natural regeneration-based silviculture can be derived under present and future climate scenarios. Also, the model structure makes it possible to detect the likely bottlenecks affecting the process. The integral model consists of five submodels corresponding to each of the subprocesses linking the stages involved in natural regeneration (seed production, seed dispersal, seed germination, seed predation and seedling survival). The outputs of the submodels represent the transitional probabilities between these stages as a function of climatic and stand variables, which in turn are representative of the ecological factors driving regeneration. At subprocess level, the findings of this dissertation should be interpreted as follows. The scheduling of the shelterwood system currently conducted over low density stands leads to situations of dispersal limitation since the initial stages of the regeneration period. Concerning predation, predator activity appears to be only limited by the occurrence of severe summer droughts and masting events, the summer resulting in a favourable period for seed survival. Out of this time interval, predators were found to almost totally deplete seed crops. Given that P. pinea dissemination occurs in summer (i.e. the safe period against predation), the likelihood of a seed to not be destroyed is conditional to germination occurrence prior to the intensification of predator activity. However, the optimal conditions for germination seldom take place, restraining emergence to few days during the fall. Thus, the window to reach the seedling stage is narrow. In addition, the seedling survival submodel predicts extremely high seedling mortality rates and therefore only some individuals from large cohorts will be able to persist. These facts, along with the strong climate-mediated masting habit exhibited by P. pinea, reveal that viii the overall probability of establishment is low. Given this background, current management –low final stand densities resulting from intense thinning and strict felling schedules– conditions the occurrence of enough favourable events to achieve natural regeneration during the current rotation time. Stochastic simulation and optimisation computed through the integral model confirm this circumstance, suggesting that more flexible and progressive regeneration fellings should be conducted. From an ecological standpoint, these results inform a reproductive strategy leading to uneven-aged stand structures, in full accordance with the medium shade-tolerant behaviour of the species. As a final remark, stochastic simulations performed under a climate-change scenario show that regeneration in the species will not be strongly hampered in the future. This resilient behaviour highlights the fundamental ecological role played by P. pinea in demanding areas where other tree species fail to persist.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research first evaluated the effects of urban wildland interface on reproductive biology of the Big Pine Partridge Pea, Chamaecrista keyensis, an understory herb that is endemic to Big Pine Key, Florida. I found that C. keyensis was self-compatible, but depended on bees for seed set. Furthermore, individuals of C. keyensis in urban habitats suffered higher seed predation and therefore set fewer seeds than forest interior plants. ^ I then focused on the effects of fire at different times of the year, summer (wet) and winter (dry), on the population dynamics and population viability of C. keyensis. I found that C. keyensis population recovered faster after winter burns and early summer burns (May–June) than after late summer burns (July–September) due to better survival and seedling recruitment following former fires. Fire intensity had positive effects on reproduction of C. keyensis. In contrast, no significant fire intensity effects were found on survival, growth, and seedling recruitment. This indicated that better survival and seedling recruitment following winter and early summer burns (compared with late summer burns) were due to the reproductive phenology of the plant in relation to fires rather than differences in fire intensity. Deterministic population modeling showed that time since fire significantly affected the finite population growth rates (λ). Particularly, recently burned plots had the largest λ. In addition, effects of timing of fires on λ were most pronounced the year of burn, but not the subsequent years. The elasticity analyses suggested that maximizing survival is an effective way to minimize the reduction in finite population growth rate the year of burn. Early summer fires or dry-season fires may achieve this objective. Finally, stochastic simulations indicated that the C. keyensis population had lower extinction risk and population decline probability if burned in the winter than in the late summer. A fire frequency of approximately 7 years would create the lowest extinction probability for C. keyensis. A fire management regime including a wide range of burning seasons may be essential for the continued existence of C. keyensis and other endemic species of pine rockland on Big Pine Key. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The loss of seed-rich wintering habitats has been a major contributory cause of farmland bird population declines in western Europe. Agricultural grasslands are particularly poor winter foraging habitats for granivorous birds, which have declined most in the pastoral farming regions of western Britain. We describe an experiment to test the utility of fertile ryegrass (Lolium) swards as a potentially rich source of winter seed for declining farmland birds. Four patches of final-cut grass silage were allowed to set seed and were left in situ overwinter. Half of each patch was lightly aftermath grazed in an attempt to increase the accessibility of the seed to foraging birds and reduce the perceived predation risk. Large numbers of yellowhammers (Emberiza citrinella) and reed buntings (E. schoeniclus) foraged on the seeded plots throughout the winter. They preferred to forage on ungrazed seeded plots, where the accumulation of senescent foliage resulted in a 14% average loss in silage yield in the following season. However, seed produced on the plots also led to sward regeneration, increasing subsequent yields on some plots. The technique offers clear benefits as a potential future agri-environment measure for declining granivorous birds, with wide applicability, but requires further development to minimise sward damage and costs to the farmer. Autumn grazing should reduce sward damage, but at the cost of reduced usage by buntings. Using the technique just prior to reseeding would be one way of avoiding any costs of sward damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Brazilian Atlantic forest (BAF) there are at least 57 rodent species and most of them are considered omnivorous. These species feed, more or less frequently, on fruits and seeds. Nevertheless the potential role of each species as frugivorous, seed predator or seed disperser is still unclear. In the present study we analyzed patterns of fruit and seed exploitation by eight small rodent species from an Atlantic Forest site. We offered to captive animals fruits of 30 plant species (23 genera, 15 families). After 48 h we recorded consumption patterns of pulp/aril and seed. Rodent species differed in their patterns of fruit and seed exploitation. The smallest species, Akodon serrensis, Oligoryzomys nigripes, and Wilfredomys pictipes (body size range : 26-45 g), and also the medium-sized Oecomys aff. concolor (84 g) fed mainly on pulp and also on small to medium-sized seeds (< 10 mm diameter). The medium-sized rodent, Oryzomys russatus (91 g) fed on pulp and also on seeds with diameter ≤ 15 mm. Thus larger seeds remain intact after being manipulated by such species. The medium-sized Delomys dorsalis (72 g) and the larger Trinomys iheringi (274 g) and Nectomys squamipes (253 g) form a third group, which consumed both fruit and seed of most species independent of their size. These later two species and also O. russatus are probably the main seed predators in the rodent community of the BAF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predators directly and indirectly affect the density and the behavior of prey. These effects may potentially cascade down to lower trophic levels. In this study, we tested the effects of predator calls (playbacks of bird vocalizations: Tyto alba, Speotyto cunicularia, and Vanellus chilensis), predator visual stimuli (stuffed birds) and interactions of visual and auditory cues, on the behavior of frugivore phyllostomid bats in the field. In addition, we tested if the effects of predation risk cascade down to other trophic levels by measuring rates of seed dispersal of the tree Muntingia calabura. Using video recording, we found that bats significantly decreased the foraging frequency on trees when a visual cue of T. alba was present. However, no stimuli of potential predatory birds, including vocalization of T. alba, affected bat foraging frequency. There was a change in bat behavior during 7 min, but then their frequency of activity gradually increased. Consequently, the presence of T. alba decreased by up to ten times the rate of seed removal. These results indicate that risk sensitivity of frugivorous phyllostomid bats depends on predator identity and presence. Among the predators used in this study, only T. alba is an effective bat predator in the Neotropics. Sound stimuli of T. alba seem not to be a cue of predation risk, possibly because their vocalizations are used only for intraspecific communication. This study emphasizes the importance of evaluating different predator stimuli on the behavior of vertebrates, as well as the effects of these stimuli on trait-mediated trophic cascades. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Successful seed dispersal by animals is assumed to occur when undamaged seeds arrive at a favourable microsite. Most seed removal and dispersal studies consider only two possible seed fates, predation or escape intact. Whether partial consumption of seeds has ecological implications for natural regeneration is unclear. We studied partial consumption of seeds in a rodent-dispersed oak species. 2. Fifteen percent of dispersed acorns were found partially eaten in a field experiment. Most damage affected only the basal portion of the seeds, resulting in no embryo damage. Partially eaten acorns had no differences in dispersal distance compared to intact acorns but were recovered at farther distances than completely consumed acorns. 3. Partially eaten acorns were found under shrub cover unlike intact acorns that were mostly dispersed to open microhabitats. 4. Partially eaten acorns were not found buried proportionally more often than intact acorns, leading to desiccation and exposure to biotic agents (predators, bacteria and fungi). However, partial consumption caused more rapid germination, which enables the acorns to tolerate the negative effects of exposure. 5. Re-caching and shrub cover as microhabitat of destination promote partial seed consumption. Larger acorns escaped predation more often and had higher uneaten cotyledon mass. Satiation at seed level is the most plausible explanation for partial consumption. 6. Partial consumption caused no differences in root biomass when acorns experienced only small cotyledon loss. However, root biomass was lower when acorns experienced heavy loss of tissue but, surprisingly, they produced longer roots, which allow the seeds to gain access sooner to deeper resources. 7.Synthesis. Partial consumption of acorns is an important event in the oak regeneration process, both quantitatively and qualitatively. Most acorns were damaged non-lethally, without decreasing both dispersal distances and the probability of successful establishment. Faster germination and production of longer roots allow partially eaten seeds to tolerate better the exposure disadvantages caused by the removal of the pericarp and the non-buried deposition. Consequently, partially consumed seeds can contribute significantly to natural regeneration and must be considered in future seed dispersal studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various environmental factors may influence the foraging behaviour of seed dispersers which could ultimately affect the seed dispersal process. We examined whether moonlight levels and the presence or absence of rodentshelter affect rodentseedremoval (rate, handling time and time of removal) and seedselection (size and species) among seven oak species. The presence or absence of safe microhabitats was found to be more important than moonlight levels in the removal of seeds. Bright moonlight caused a different temporal distribution of seedremoval throughout the night but only affected the overall removal rates in open microhabitats. Seeds were removed more rapidly in open microhabitat (regardless of the moon phase), decreasing the time allocated to seed discrimination and translocation. Only in open microhabitats did increasing levels of moonlight decrease the time allocated to selection and removal of seeds. As a result, a more precise seedselection was made under shelter, owing to lower levels of predation risk. Rodent ranking preference for species was identical between full/new moon in shelter but not in open microhabitats. For all treatments, species selection by rodents was much stronger than size selection. Nevertheless, heavy seeds, which require more energy and time to be transported, were preferentially removed under shelter, where there is no time restriction to move the seeds. Our findings reveal that seedselection is safety dependent and, therefore, microhabitats in which seeds are located (sheltered versus exposed) and moonlight levels in open areas should be taken into account in rodent food selection studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process of seed dispersal of many animal-dispersed plants is frequently mediated by a small set of biotic agents. However, the contribution that each of these dispersers makes to the overall recruitment may differ largely, with important ecological and management implications for the population viability and dynamics of the species implied in these interactions. In this paper, we compared the relative contribution of two local guilds of scatter-hoarding animals with contrasting metabolic requirements and foraging behaviours (rodents and dung beetles) to the overall recruitment of two Quercus species co-occurring in the forests of southern Spain. For this purpose, we considered not only the quantity of dispersed seeds but also the quality of the seed dispersal process. The suitability for recruitment of the microhabitats where the seeds were deposited was evaluated in a multi-stage demographic approach. The highest rates of seed handling and predation occurred in those microhabitats located under shrubs, mostly due to the foraging activity of rodents. However, the probability of a seed being successfully cached was higher in microhabitats located beneath a tree canopy as a result of the feeding behaviour of beetles. Rodents and beetles showed remarkable differences in their effectiveness as local acorn dispersers. Quantitatively, rodents were much more important than beetles because they dispersed the vast majority of acorns. However, they were qualitatively less effective because they consumed a high proportion of them (over 95%), and seeds were mostly dispersed under shrubs, a less suitable microhabitat for short-term recruitment of the two oak species. Our findings demonstrate that certain species of dung beetles (such as Thorectes lusitanicus), despite being quantitatively less important than rodents, can act as effective local seed dispersers of Mediterranean oak species. Changes in the abundance of beetle populations could thus have profound implications for oak recruitment and community dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a study of the effects on animals of seed protein extracts of 15 Malesian members of the Leguminosae (including 11 rain forest tree species), most of the taxa agglutinated red blood cells, induced mitosis, and inhibited amylases. These results are consistent with the hypothesis that these proteins interact with other organisms, most probably in defense mechanisms against predation by animals. The functions of these proteins are most profitably studied in rain forest environments where their activity is so marked, and where biological interactions are particularly important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the Australian wet tropics bioregion, only 900 000 hectares of once continuous rainforest habitat between Townsville and Cooktown now remains. While on the Atherton Tableland, only 4% of the rainforest that once occurred there remains today with remnant vegetation now forming a matrix of rainforest dispersed within agricultural land (sugarcane, banana, orchard crops, townships and pastoral land). Some biologists have suggested that remnants often support both faunal and floral communities that differ significantly from remaining continuous forest. Australian tropical forests possess a relatively high diversity of native small mammal species particularly rodents, which unlike larger mammalian and avian frugivores elsewhere, have been shown to be resilient to the effects of fragmentation, patch isolation and reduction in patch size. While small mammals often become the dominant mammalian frugivores, in terms of their relative abundance, the relationship that exists between habitat diversity and structure, and the impacts of small mammal foraging within fragmented habitat patches in Australia, is still poorly understood. The relationship between foraging behaviour and demography of two small mammal species, Rattus fuscipes and Melomys cervinipes, and food resources in fragmented rainforest sites, were investigated in the current study. Population densities of both species were strongly related with overall density of seed resources in all rainforest fragments. The distribution of both mammal species however, was found to be independent of the distribution of seed resources. Seed utilisation trials indicated that M.cervinipes and R.fuscipes had less impact on seed resources (extent of seed harvesting) than did other rainforest frugivores. Experimental feeding trials demonstrated that in 85% of fruit species tested, rodent feeding increased seed germination by a factor of 3.5 suggesting that in Australian tropical rainforest remnants, small mammals may play a significant role in enhancing germination of large seeded fruits. This study has emphasised the role of small mammals in tropical rainforest systems in north eastern Australia, in particular, the role that they play within isolated forest fragments where larger frugivorous species may be absent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Seed-transmissibility of brood bean stain virus (BBSV) was investigated in a number of wild legume species. Genninating axes of seeds coliected from BBSV -infected plants were tested by the enzyme-linked immunosorbent assay (ELISA). The virus was found to be seedtransmitted in Vida pal«stina.