981 resultados para predictive modelling
Resumo:
In this article, the results of a modified SERVQUAL questionnaire (Parasuraman et al., 1991) are reported. The modifications consisted in substituting questionnaire items particularly suited to a specific service (banking) and context (county of Girona, Spain) for the original rather general and abstract items. These modifications led to more interpretable factors which accounted for a higher percentage of item variance. The data were submitted to various structural equation models which made it possible to conclude that the questionnaire contains items with a high measurement quality with respect to five identified dimensions of service quality which differ from those specified by Parasuraman et al. And are specific to the banking service. The two dimensions relating to the behaviour of employees have the greatest predictive power on overall quality and satisfaction ratings, which enables managers to use a low-cost reduced version of the questionnaire to monitor quality on a regular basis. It was also found that satisfaction and overall quality were perfectly correlated thus showing that customers do not perceive these concepts as being distinct
Resumo:
A theoretical model is used to predict the growth of Staphylococcus aureus in a pasteurized meat product kept at ambient temperatures for several hours. For this purpose, the temperature profiles of some cities of Mexico were combined with literature data on the kinetics of S. aureus growth. As shown by theoretical predictions, if the food is kept at ambient temperature, the average daily temperature may not give accurate predictions.
Resumo:
Nykypäivän monimutkaisessa ja epävakaassa liiketoimintaympäristössä yritykset, jotka kykenevät muuttamaan tuottamansa operatiivisen datan tietovarastoiksi, voivat saavuttaa merkittävää kilpailuetua. Ennustavan analytiikan hyödyntäminen tulevien trendien ennakointiin mahdollistaa yritysten tunnistavan avaintekijöitä, joiden avulla he pystyvät erottumaan kilpailijoistaan. Ennustavan analytiikan hyödyntäminen osana päätöksentekoprosessia mahdollistaa ketterämmän, reaaliaikaisen päätöksenteon. Tämän diplomityön tarkoituksena on koota teoreettinen viitekehys analytiikan mallintamisesta liike-elämän loppukäyttäjän näkökulmasta ja hyödyntää tätä mallinnusprosessia diplomityön tapaustutkimuksen yritykseen. Teoreettista mallia hyödynnettiin asiakkuuksien mallintamisessa sekä tunnistamalla ennakoivia tekijöitä myynnin ennustamiseen. Työ suoritettiin suomalaiseen teollisten suodattimien tukkukauppaan, jolla on liiketoimintaa Suomessa, Venäjällä ja Balteissa. Tämä tutkimus on määrällinen tapaustutkimus, jossa tärkeimpänä tiedonkeruumenetelmänä käytettiin tapausyrityksen transaktiodataa. Data työhön saatiin yrityksen toiminnanohjausjärjestelmästä.
Resumo:
In this article, the results of a modified SERVQUAL questionnaire (Parasuraman et al., 1991) are reported. The modifications consisted in substituting questionnaire items particularly suited to a specific service (banking) and context (county of Girona, Spain) for the original rather general and abstract items. These modifications led to more interpretable factors which accounted for a higher percentage of item variance. The data were submitted to various structural equation models which made it possible to conclude that the questionnaire contains items with a high measurement quality with respect to five identified dimensions of service quality which differ from those specified by Parasuraman et al. And are specific to the banking service. The two dimensions relating to the behaviour of employees have the greatest predictive power on overall quality and satisfaction ratings, which enables managers to use a low-cost reduced version of the questionnaire to monitor quality on a regular basis. It was also found that satisfaction and overall quality were perfectly correlated thus showing that customers do not perceive these concepts as being distinct
Resumo:
While the standard models of concentration addition and independent action predict overall toxicity of multicomponent mixtures reasonably, interactions may limit the predictive capability when a few compounds dominate a mixture. This study was conducted to test if statistically significant systematic deviations from concentration addition (i.e. synergism/antagonism, dose ratio- or dose level-dependency) occur when two taxonomically unrelated species, the earthworm Eisenia fetida and the nematode Caenorhabditis elegans were exposed to a full range of mixtures of the similar acting neonicotinoid pesticides imidacloprid and thiacloprid. The effect of the mixtures on C. elegans was described significantly better (p<0.01) by a dose level-dependent deviation from the concentration addition model than by the reference model alone, while the reference model description of the effects on E. fetida could not be significantly improved. These results highlight that deviations from concentration addition are possible even with similar acting compounds, but that the nature of such deviations are species dependent. For improving ecological risk assessment of simple mixtures, this implies that the concentration addition model may need to be used in a probabilistic context, rather than in its traditional deterministic manner. Crown Copyright (C) 2008 Published by Elsevier Inc. All rights reserved.
Resumo:
Design management research usually deals with the processes within the professional design team and yet, in the UK, the volume of the total project information produced by the specialist trade contractors equals or exceeds that produced by the design team. There is a need to understand the scale of this production task and to plan and manage it accordingly. The model of the process on which the plan is to be based, while generic, must be sufficiently robust to cover the majority of instances. An approach using design elements, in sufficient depth to possibly develop tools for a predictive model of the process, is described. The starting point is that each construction element and its components have a generic sequence of design activities. Specific requirements tailor the element's application to the building. Then there are the constraints produced due to the interaction with other elements. Therefore, the selection of a component within the element may impose a set of constraints that will affect the choice of other design elements. Thus, a design decision can be seen as an interrelated element-constraint-element (ECE) sub-net. To illustrate this approach, an example of the process within precast concrete cladding has been used.
Resumo:
Design management research usually deals with the processes within the professional design team and yet, in the UK, the volume of the total project information produced by the specialist trade contractors equals or exceeds that produced by the design team. There is a need to understand the scale of this production task and to plan and manage it accordingly. The model of the process on which the plan is to be based, while generic, must be sufficiently robust to cover the majority of instances. An approach using design elements, in sufficient depth to possibly develop tools for a predictive model of the process, is described. The starting point is that each construction element and its components have a generic sequence of design activities. Specific requirements tailor the element's application to the building. Then there are the constraints produced due to the interaction with other elements. Therefore, the selection of a component within the element may impose a set of constraints that will affect the choice of other design elements. Thus, a design decision can be seen as an interrelated element-constraint-element (ECE) sub-net. To illustrate this approach, an example of the process within precast concrete cladding has been used.
Resumo:
Several studies have highlighted the importance of the cooling period in oil absorption in deep-fat fried products. Specifically, it has been established that the largest proportion of oil which ends up into the food, is sucked into the porous crust region after the fried product is removed from the oil bath, stressing the importance of this time interval. The main objective of this paper was to develop a predictive mechanistic model that can be used to understand the principles behind post-frying cooling oil absorption kinetics, which can also help identifying the key parameters that affect the final oil intake by the fried product. The model was developed for two different geometries, an infinite slab and an infinite cylinder, and was divided into two main sub-models, one describing the immersion frying period itself and the other describing the post-frying cooling period. The immersion frying period was described by a transient moving-front model that considered the movement of the crust/core interface, whereas post-frying cooling oil absorption was considered to be a pressure driven flow mediated by capillary forces. A key element in the model was the hypothesis that oil suction would only begin once a positive pressure driving force had developed. The mechanistic model was based on measurable physical and thermal properties, and process parameters with no need of empirical data fitting, and can be used to study oil absorption in any deep-fat fried product that satisfies the assumptions made.
Resumo:
This paper investigates the properties of implied volatility series calculated from options on Treasury bond futures, traded on LIFFE. We demonstrate that the use of near-maturity at the money options to calculate implied volatilities causes less mis-pricing and is therefore superior to, a weighted average measure encompassing all relevant options. We demonstrate that, whilst a set of macroeconomic variables has some predictive power for implied volatilities, we are not able to earn excess returns by trading on the basis of these predictions once we allow for typical investor transactions costs.
Resumo:
Data assimilation is predominantly used for state estimation; combining observational data with model predictions to produce an updated model state that most accurately approximates the true system state whilst keeping the model parameters fixed. This updated model state is then used to initiate the next model forecast. Even with perfect initial data, inaccurate model parameters will lead to the growth of prediction errors. To generate reliable forecasts we need good estimates of both the current system state and the model parameters. This paper presents research into data assimilation methods for morphodynamic model state and parameter estimation. First, we focus on state estimation and describe implementation of a three dimensional variational(3D-Var) data assimilation scheme in a simple 2D morphodynamic model of Morecambe Bay, UK. The assimilation of observations of bathymetry derived from SAR satellite imagery and a ship-borne survey is shown to significantly improve the predictive capability of the model over a 2 year run. Here, the model parameters are set by manual calibration; this is laborious and is found to produce different parameter values depending on the type and coverage of the validation dataset. The second part of this paper considers the problem of model parameter estimation in more detail. We explain how, by employing the technique of state augmentation, it is possible to use data assimilation to estimate uncertain model parameters concurrently with the model state. This approach removes inefficiencies associated with manual calibration and enables more effective use of observational data. We outline the development of a novel hybrid sequential 3D-Var data assimilation algorithm for joint state-parameter estimation and demonstrate its efficacy using an idealised 1D sediment transport model. The results of this study are extremely positive and suggest that there is great potential for the use of data assimilation-based state-parameter estimation in coastal morphodynamic modelling.
Resumo:
Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, either using well-founded empirical relationships or process-based models with good predictive skill. A large variety of models exist today and it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project - FireMIP, an international project to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we summarise the current state-of-the-art in fire regime modelling and model evaluation, and outline what essons may be learned from FireMIP.
Resumo:
Credit scoring modelling comprises one of the leading formal tools for supporting the granting of credit. Its core objective consists of the generation of a score by means of which potential clients can be listed in the order of the probability of default. A critical factor is whether a credit scoring model is accurate enough in order to provide correct classification of the client as a good or bad payer. In this context the concept of bootstraping aggregating (bagging) arises. The basic idea is to generate multiple classifiers by obtaining the predicted values from the fitted models to several replicated datasets and then combining them into a single predictive classification in order to improve the classification accuracy. In this paper we propose a new bagging-type variant procedure, which we call poly-bagging, consisting of combining predictors over a succession of resamplings. The study is derived by credit scoring modelling. The proposed poly-bagging procedure was applied to some different artificial datasets and to a real granting of credit dataset up to three successions of resamplings. We observed better classification accuracy for the two-bagged and the three-bagged models for all considered setups. These results lead to a strong indication that the poly-bagging approach may promote improvement on the modelling performance measures, while keeping a flexible and straightforward bagging-type structure easy to implement. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This thesis examines the concept of tie strength and investigates how it can be determined on the fly in the Facebook Social Network Service (SNS) by a system constructed using the standard developer API. We analyze and compare two different models: the first one is an adaptation of previous literature (Gilbert & Karahalios, 2009), the second model is built from scratch and based on a dataset obtained from an online survey. This survey took the form of a Facebook application that collected subjective ratings of the strength of 1642 ties (friendships) from 85 different participants. The new tie strength model was built based on this dataset by using a multiple regression method. We saw that the new model performed slightly better than the original adapted model, plus it had the advantage of being easier to implement. In conclusion, this thesis has shown that tie strength models capable of serving as useful friendship predictors are easily implementable in a Facebook application via standard API calls. In addition to a new tie strength model, the methodology adopted in this work permitted observation of the weights of each predictive variable used in the model, increasing the visibility of the factors that affects peoples’ relationships in online social networks.
Resumo:
The research is aimed at contributing to the identification of reliable fully predictive Computational Fluid Dynamics (CFD) methods for the numerical simulation of equipment typically adopted in the chemical and process industries. The apparatuses selected for the investigation, specifically membrane modules, stirred vessels and fluidized beds, were characterized by a different and often complex fluid dynamic behaviour and in some cases the momentum transfer phenomena were coupled with mass transfer or multiphase interactions. Firs of all, a novel modelling approach based on CFD for the prediction of the gas separation process in membrane modules for hydrogen purification is developed. The reliability of the gas velocity field calculated numerically is assessed by comparison of the predictions with experimental velocity data collected by Particle Image Velocimetry, while the applicability of the model to properly predict the separation process under a wide range of operating conditions is assessed through a strict comparison with permeation experimental data. Then, the effect of numerical issues on the RANS-based predictions of single phase stirred tanks is analysed. The homogenisation process of a scalar tracer is also investigated and simulation results are compared to original passive tracer homogenisation curves determined with Planar Laser Induced Fluorescence. The capability of a CFD approach based on the solution of RANS equations is also investigated for describing the fluid dynamic characteristics of the dispersion of organics in water. Finally, an Eulerian-Eulerian fluid-dynamic model is used to simulate mono-disperse suspensions of Geldart A Group particles fluidized by a Newtonian incompressible fluid as well as binary segregating fluidized beds of particles differing in size and density. The results obtained under a number of different operating conditions are compared with literature experimental data and the effect of numerical uncertainties on axial segregation is also discussed.
Resumo:
Waste management represents an important issue in our society and Waste-to-Energy incineration plants have been playing a significant role in the last decades, showing an increased importance in Europe. One of the main issues posed by waste combustion is the generation of air contaminants. Particular concern is present about acid gases, mainly hydrogen chloride and sulfur oxides, due to their potential impact on the environment and on human health. Therefore, in the present study the main available technological options for flue gas treatment were analyzed, focusing on dry treatment systems, which are increasingly applied in Municipal Solid Wastes (MSW) incinerators. An operational model was proposed to describe and optimize acid gas removal process. It was applied to an existing MSW incineration plant, where acid gases are neutralized in a two-stage dry treatment system. This process is based on the injection of powdered calcium hydroxide and sodium bicarbonate in reactors followed by fabric filters. HCl and SO2 conversions were expressed as a function of reactants flow rates, calculating model parameters from literature and plant data. The implementation in a software for process simulation allowed the identification of optimal operating conditions, taking into account the reactant feed rates, the amount of solid products and the recycle of the sorbent. Alternative configurations of the reference plant were also assessed. The applicability of the operational model was extended developing also a fundamental approach to the issue. A predictive model was developed, describing mass transfer and kinetic phenomena governing the acid gas neutralization with solid sorbents. The rate controlling steps were identified through the reproduction of literature data, allowing the description of acid gas removal in the case study analyzed. A laboratory device was also designed and started up to assess the required model parameters.