973 resultados para pox viruses
Resumo:
SummaryResearch projects presented in this thesis aimed to investigate two major aspects of the arenaviruses life cycle in the host cell: viral entry and the biosynthesis of the viral envelope glycoprotein.Old World arenaviruses (OWAV), such as Lassa virus (LASV) and lymphocytic choriomeningitis virus (LCMV), attach to the cell by binding to their receptor, alpha-dystroglycan. Virions are then internalized by a largely unknown pathway of endocytosis and delivered to the late endosome/lysosome where fusion occurs at low pH. In the major project of my thesis, we sought to identify cellular factors involved in OWAV cell entry. Our work indicates that OWAV cell entry requires microtubular transport and a functional multivesicular body (MVB) compartment. Infection indeed depends on phosphatidyl inositol 3-kinase (PI3K) activity and lysobisphosphatidic acid (LBPA), a lipid found in membranes of intraluminal vesicles (ILVs) of the MVB. We further found a requirement of factors that are part of the endosomal sorting complex required for transport (ESCRT), involved in the formation of ILVs. This suggests an ESCRT-mediated sorting of virus- receptor complex during the entry process.During viral replication, biosynthesis of viral glycoprotein takes place in the endoplasmic reticulum (ER) of the host cell. When protein load exceeds the folding capacity of the ER, the accumulation of unfolded proteins is sensed by three ER resident proteins, activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1) and PKR-like ER kinase (PERK), whose signaling induces the cellular unfolded protein response (UPR). Our results indicate that acute LCMV infection transiently induces the activation of the ATF6 branch of the UPR, whereas the PERK, and IRE1 axis of UPR are neither triggered nor blocked during infection. Our data also demonstrate that activation of ATF6 pathway is required for optimal viral replication during acute infection.The formation of the mature, fusion-active form of arenaviruses glycoproteins requires proteolytic cleavage mediated by the cellular protease subtilisin kexin isozyme-1 (SKI-l)/site-l protease (SIP). We show that targeting the SKI-1/S1P enzymatic activity with specific inhibitors is a powerful strategy to block arenaviruses productive infection. Moreover, characterization of protease function highlights differences in processing between cellular and viral substrates, opening new possibilities in term of drug development against human pathogenic arenaviruses.RésuméLes projets de recherche présentés dans cette thèse visaient à étudier deux aspects du cycle de vie des arenavirus: l'entrée du virus dans la cellule hôte et la biosynthèse de la glycoprotéine durant la réplication virale.Les arenavirus du vieux monde (OWAV), tels que le virus de Lassa (LASV) et le virus de la chorioméningite lymphocytaire (LCMV) s'attachent à la cellule hôte en se liant à leur récepteur, l'alpha-dystroglycane. Les virions sont ensuite intemalisés par une voie d'endocytose inconnue et livrés à l'endosome tardif/lysosome, où le pH acide permet la fusion entre l'enveloppe virale et la membrane du compartiment. Le projet principal de ma thèse consistait à identifier les facteurs cellulaires impliqués dans l'entrée des OWAV dans la cellule hôte. Nos résultats indiquent que l'entrée des OWAV nécessite le transport microtubulaire et la présence d'un corps multivésiculaire (MVB) fonctionnel. L'infection dépend en effet de l'activité de phosphatidyl inositol 3-kinase (PI3K) et de lysobisphosphatidic acid (LBPA), un lipide présent dans les membranes des vésicules intraluminales (ILVs) du MVB. Nous avons également trouvé l'implication de facteurs constituant l'endosomal sorting complex required for sorting (ESCRT) qui joue un rôle dans la formation des ILVs. Ces donnés suggèrent l'incorporation du complexe virus-récepteur dans des ILVs durant le processus d'entrée.Lors de la réplication virale, la biosynthèse de la glycoprotéine virale a lieu dans le réticulum endoplasmique (ER) de la cellule hôte. Lorsque la charge de protéines nouvellement synthétisées excède la capacité de pliage des protéines dans le ER, l'accumulation de protéines mal pliées est détectée par trois facteurs: activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1) et PKR-like ER kinase (PERK). Leur signalisation constitue la réponse cellulaire face aux protéines mal pliées (UPR). Nos résultats montrent que l'infection aiguë avec LCMV induit transitoirement l'activation de la voie de signalisation ATF6 alors que les axes PERK et IRE1 de l'UPR ne sont ni induits ni bloqués pendant l'infection. Nos données prouvent également que l'activation de la voie ATF6 est nécessaire à une réplication virale optimale lors de l'infection aiguë avec LCMV.La maturation des glycoprotéines des arenavirus nécessite un clivage protéolytique par la protéase cellulaire subtilisin kexin isozyme-1 (SKI-l)/site-l protease (SIP). Nous avons démontré que le ciblage de l'activité enzymatique de SKI-1/SIΡ avec des inhibiteurs spécifiques est une stratégie prometteuse pour bloquer l'infection par les arenavirus. La caractérisation du mécanisme d'action de la protéase a, par ailleurs, révélé des différences au niveau du clivage entre les substrats cellulaires et viraux, ce qui ouvre de nouvelles perspectives en terme de développement de médicaments contre les arenavirus pathogènes pour l'homme.
Resumo:
The present paper reports a laboratory investigation performed between the years of 2000 and 2002 to stydy a virological surveillance program introduced in the state of Piauí to support an epidemiological survey of the disease. Dengue virus type 3 (DENV-3) existence in the state was detected in May 2002 when a high number of dengue cases due to DENV-1 and DENV-2 were reported. An assessment on the population knowledge about the disease and its transmission showed that almost 50% of the population were still unaware of the epidemiological features of dengue.
Resumo:
A survey was conducted in two pediatric intensive care units in hospitals in Porto Alegre, Brazil, in order to monitor the main respiratory viruses present in bronchiolitis and/or pneumonia and their involvement in the severity of viral respiratory infections. Viral respiratory infection prevalence was 38.7%. In bronchiolitis, respiratory syncytial virus (RSV) was detected in 36% of the cases. In pneumonia, the prevalence rates were similar for adenovirus (10.3%) and RSV (7.7%). There was a difference among the viruses detected in terms of frequency of clinical findings indicating greater severity. Frequency of crackles in patients with RSV (47.3%) showed a borderline significance (p = 0.055, Fisher's exact test) as compared to those with adenovirus (87.5%). The overall case fatality rate in this study was 2.7%, and adenovirus showed a significantly higher case fatality rate (25%) than RSV (2.8%) (p = 0.005). Injected antibiotics were used in 49% of the children with RSV and 60% of those with adenovirus. Adenovirus was not detected in any of the 33 children submitted to oxygen therapy.
Resumo:
A locality in the district of Tlalpan, Mexico City, was selected in order to identify the viral agents in children younger than 5 years of age with acute respiratory infection (ARI). A total of 300 children were randomly selected and were included in this study for a period of 13 months. During this period nasopharyngeal exudates were collected for the isolation of viral agents. Monoclonal fluorescent antibodies were used for viral identification after cell culture. Viral infection was detected in 65% of the specimens. The respiratory syncytial virus (RSV) was the most common virus agent detected. Children required an average of two consultations during the study period. Two high incidence peaks were observed, one during the summer and the other during winter; the most frequent viruses during these seasons were influenza A and RSV, respectively. The largest number of viruses was isolated in the group of children between 1 and 2 years of age and in the group between 4 and 5 years of age. This study demonstrated the presence of ARI and of different viruses in a period of 13 months, as well as the most frequent viruses in children younger than 5 years of age from a community of Mexico City.
Resumo:
The main viruses involved in acute respiratory diseases among children are: respiratory syncytial virus (RSV), influenzavirus (FLU), parainfluenzavirus (PIV), adenovirus (AdV), human rhinovirus (HRV), and the human metapneumovirus (hMPV). The purpose of the present study was to identify respiratory viruses that affected children younger than five years old in Uberlândia, Midwestern Brazil. Nasopharyngeal aspirates from 379 children attended at Hospital de Clínicas (HC/UFU), from 2001 to 2004, with acute respiratory disease, were collected and tested by immunofluorescence assay (IFA) to detect RSV, FLU A and B, PIV 1, 2, and 3 and AdV, and RT-PCR to detect HRV. RSV was detected in 26.4% (100/379) of samples, FLU A and B in 9.5% (36/379), PIV 1, 2 and 3 in 6.3% (24/379) and AdV in 3.7% (14/379). HRV were detected in 29.6% (112/379) of the negative and indeterminate samples tested by IFI. RSV, particularly among children less than six months of life, and HRV cases showed highest incidence. Negative samples by both IFA and RT-PCR might reflect the presence of other pathogens, such as hMPV, coronavirus, and bacteria. Laboratorial diagnosis constituted an essential instrument to determine the incidence of the most common viruses in respiratory infections among children in this region.
Resumo:
Protection from reactivation of persistent herpes virus infection is mediated by Ag-specific CD8 T cell responses, which are highly regulated by still poorly understood mechanisms. In this study, we analyzed differentiation and clonotypic dynamics of EBV- and CMV-specific T cells from healthy adults. Although these T lymphocytes included all subsets, from early-differentiated (EM/CD28(pos)) to late-differentiated (EMRA/CD28(neg)) stages, they varied in the sizes/proportions of these subsets. In-depth clonal composition analyses revealed TCR repertoires, which were highly restricted for CMV- and relatively diverse for EBV-specific cells. Virtually all virus-specific clonotypes identified in the EMRA/CD28(neg) subset were also found within the pool of less differentiated "memory" cells. However, striking differences in the patterns of dominance were observed among these subsets, because some clonotypes were selected with differentiation while others were not. Late-differentiated CMV-specific clonotypes were mostly characterized by TCR with lower dependency on CD8 coreceptor interaction. Yet all clonotypes displayed similar functional avidities, suggesting a compensatory role of CD8 in the clonotypes of lower TCR avidity. Importantly, clonotype selection and composition of each virus-specific subset upon differentiation was highly preserved over time, with the presence of the same dominant clonotypes at specific differentiation stages within a period of 4 years. Remarkably, clonotypic distribution was stable not only in late-differentiated but also in less-differentiated T cell subsets. Thus, T cell clonotypes segregate with differentiation, but the clonal composition once established is kept constant for at least several years. These findings reveal novel features of the highly sophisticated control of steady state protective T cell activity in healthy adults.
Resumo:
Several studies conducted all over the world have reported that the influenza virus is associated with great morbidity and mortality rates. In this study, we analyzed the incidence of the influenza virus between 2000 and 2003 in Curitiba. We studied 1621 samples obtained from outpatients and hospitalized patients of both sexes and all ages. The study was conducted at the local primary care health units (outpatients) and at the tertiary care unit (hospitalized) of the General Hospital of the Federal University in the state of Paraná, Brazil. Nasopharyngeal aspirates and, eventually, bronchoalveolar lavage were assayed for the presence of viral antigens, either by indirect immunofluorescence or cell culture. Of the samples studied, 135 (8.3%) were positive for influenza virus, and of those, 103 (76.3%) were positive for type A and 32 (23.7%) for type B. Additionally, positive samples were analyzed by reverse transcription followed by polymerase chain reaction and subtypes H1 and H3 were identified from this group. A high incidence of positive samples was observed mainly in the months with lower temperatures. Furthermore, outpatients showed a higher incidence of influenza viruses than hospitalized patients.
Resumo:
As in humans, sub-clinical infection by arboviruses in domestic animals is common; however, its detection only occurs during epizootics and the silent circulation of some arboviruses may remain undetected. The objective of the present paper was to assess the current circulation of arboviruses in the Nhecolândia sub-region of South Pantanal, Brazil. Sera from a total of 135 horses, of which 75 were immunized with bivalent vaccine composed of inactive Eastern equine encephalitis virus (EEEV) and Western equine encephalitis virus(WEEV) and 60 were unvaccinated, were submitted to thorough viral isolation, reverse transcriptase polymerase chain reaction (RT-PCR) and neutralization tests for Saint Louis encephalitis virus (SLEV), EEEV, WEEV and Mayaro virus (MAYV). No virus was isolated and viral nucleic-acid detection by RT-PCR was also negative. Nevertheless, the prevalence of neutralizing antibodies in horses older than seven months was 43.7% for SLEV in equines regardless of vaccine status, and 36.4% for WEEV and 47.7% for EEEV in unvaccinated horses. There was no evidence of MAYV infections. The serologic evidence of circulation of arboviruses responsible for equine and human encephalitis, without recent official reports of clinical infections in the area, suggests that the Nhecolândia sub-region in South Pantanal is an important area for detection of silent activity of arboviruses in Brazil.
Resumo:
Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.
Resumo:
We prospectively sampled flavivirus-naïve horses in northern Colombia to detect West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) seroconversion events, which would indicate the current circulation of these viruses. Overall, 331 (34.1%) of the 971 horses screened were positive for past infection with flaviviruses upon initial sampling in July 2006. During the 12-month study from July 2006-June 2007, 33 WNV seroconversions and 14 SLEV seroconversions were detected, most of which occurred in the department of Bolivar. The seroconversion rates of horses in Bolivar for the period of March-June 2007 reached 12.4% for WNV and 6.7% for SLEV. These results comprise the first serologic evidence of SLEV circulation in Colombia. None of the horses sampled developed symptoms of encephalitis within three years of initial sampling. Using seroconversions in sentinel horses, we demonstrated an active circulation of WNV and SLEV in northern Colombia, particularly in the department of Bolivar. The absence of WNV-attributed equine or human disease in Colombia and elsewhere in the Caribbean Basin remains a topic of debate and speculation.
Resumo:
Advances in clinical virology for detecting respiratory viruses have been focused on nucleic acids amplification techniques, which have converted in the reference method for the diagnosis of acute respiratory infections of viral aetiology. Improvements of current commercial molecular assays to reduce hands-on-time rely on two strategies, a stepwise automation (semi-automation) and the complete automation of the whole procedure. Contributions to the former strategy have been the use of automated nucleic acids extractors, multiplex PCR, real-time PCR and/or DNA arrays for detection of amplicons. Commercial fully-automated molecular systems are now available for the detection of respiratory viruses. Some of them could convert in point-of-care methods substituting antigen tests for detection of respiratory syncytial virus and influenza A and B viruses. This article describes laboratory methods for detection of respiratory viruses. A cost-effective and rational diagnostic algorithm is proposed, considering technical aspects of the available assays, infrastructure possibilities of each laboratory and clinic-epidemiologic factors of the infection.
Resumo:
Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections pose major public health problems because of their prevalence worldwide. Consequently, screening for these infections is an important part of routine laboratory activity. Serological and molecular markers are key elements in diagnosis, prognosis and treatment monitoring for HBV and HCV infections. Today, automated chemiluminescence immunoassay (CLIA) analyzers are widely used for virological diagnosis, particularly in high-volume clinical laboratories. Molecular biology techniques are routinely used to detect and quantify viral genomes as well as to analyze their sequence; in order to determine their genotype and detect resistance to antiviral drugs. Real-time PCR, which provides high sensitivity and a broad dynamic range, has gradually replaced other signal and target amplification technologies for the quantification and detection of nucleic acid. The next-generation DNA sequencing techniques are still restricted to research laboratories.The serological and molecular marker methods available for HBV and HCV are discussed in this article, along with their utility and limitations for use in Chronic Hepatitis B (CHB) diagnosis and monitoring.
Resumo:
The aim of this study was to determine the occurrences of the group A rotavirus (RVA), norovirus (NoV) and human adenovirus (HAdV) in the surface waters of an urban lagoon (Rodrigo de Freitas Lagoon) in the city of Rio de Janeiro, Brazil. During one year of surveillance, water samples were obtained from the lagoon and other interconnected ecosystems (river and beach). The samples were concentrated using an adsorption-elution method with a negatively charged membrane and tested by qualitative and quantitative polymerase chain reaction assays. RVA was the most prevalent virus detected (24.3%) with a viral load ranging from 3.0 x 10¹-5.6 x 10(4) genome copies/L, followed by NoV (18.8%) and HAdV (16.7%). Considering water samples suitable for bathing, according to Escherichia coli criterion (< 2,000 most probable number/100 mL), viruses were detected in 50% (57/114) of them. Physicochemical parameters were also measured and showed possible correlations between turbidity and RVA presence and between pH and NoV presence. These data demonstrate the importance of considering viral parameters to ensure water quality and the utilisation of these parameters as additional tools for the characterisation of environmental contamination.
Resumo:
This retrospective study (April-September 2003) was designed to investigate the roles of the main viruses responsible for cases of acute infantile gastroenteritis in hospitalised children up to two years of age. The viruses were identified in 64.7% (88/136) of the cases and the detection rates of rotavirus A (RVA), norovirus (NoV) and astrovirus were 41.9% (57/136), 30.3% (24/79) and 12.7% (7/55), respectively. RVA and NoV were detected in 20 of the 24 reported nosocomial infection cases. This study identified the first circulation of the genotype NoV GII.21 in Brazil and highlights the need to establish differential diagnoses through active laboratorial surveillance.