944 resultados para potential nutrient use efficiency


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cases of identification of bones, skeletal segments or isolated bones, searching for biotypologic diagnostic data to estimate an individual's age enables comparing these data with those of missing individuals. Enamel, dentin and pulp undergo remarkable changes during an individual's life. The enamel becomes more mineralized, smoother and thinner, and deteriorates because of physiological and pathological factors. Dental pulp decreases in volume due to the deposition of secondary dentin; thus, the dentin becomes thicker with time. In natural teeth, the fluorescence phenomenon occurs in dentin and enamel and changes in those tissues may alter the expression of the natural tooth color. The aim of this study was to assess the correlation between age and teeth fluorescence for individuals from different age groups. The sample consisted of 66 randomly selected Brazilians of both genders aged 7-63 years old. They were divided into 6 groups: Group 1 - aged 7-12 years, Group 2 - aged 13-20 years, Group 3 - aged 21-30 years, Group 4 - aged 31-40 years, Group 5 - aged 41-50 years and Group 6 - aged between 51 and 63 years. Upper right or left central incisors were used for the study. Restored and aesthetic rehabilitated teeth were excluded from the sample. The measurement of tooth fluorescence was carried out via computer analysis of digital images using the software ScanWhite DMC/Darwin Systems - Brazil. It was observed that dental fluorescence decreases when comparing the age groups 21-30, 31-40, 41-50 and 51-63 years. The results also showed that there is a statistically significant difference between the groups 41-50 years and 21-30 years (p=. 0.005) and also among the group 51-63 years and all other groups (p< 0.005). It can be concluded that dental fluorescence is correlated with age and has a similar and stable behavior from 7 to 20 years of age. It reaches its maximum expected value at the age of 26.5 years and thereafter decreases. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a eficiência da soja (Glycine max) em interceptar e usar a radiação solar em condições naturais de campo, na região Amazônica do Brasil. Os dados de crescimento e área foliar da soja e dados meteorológicos foram obtidos em um experimento agrometeorológico realizado em Paragominas, PA, em 2007 e 2008. A eficiência do uso da radiação (ERU) foi obtida pela razão entre a produção de massa de matéria seca da parte aérea e o acúmulo da radiação fotossinteticamente ativa interceptada (RFA), até os 99 e 95 dias após a semeadura, em 2007 e 2008, respectivamente. As condições climáticas durante o experimento foram muito distintas, com redução na precipitação em 2007, iniciada na metade do ciclo de cultivo de soja, em consequência do fenômeno El Niño. Observou-se uma importante redução no índice de área foliar e na produção de massa de matéria seca durante 2007. Em tais condições de campo na região Amazônica, os valores de EUR foram de 1,46 e 1,99 g MJ-1 RFA, nos experimentos de 2007 e 2008, respectivamente. A provável razão para as diferenças encontradas entre os anos pode estar associada à redução de água em 2007, em conjunto com a elevada temperatura do ar e o deficit de pressão de vapor, e também ao aumento na fração de radiação difusa que atingiu a superfície do solo em 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabajo realizado por: Packard, T. T., Osma, N., Fernández Urruzola, I., Gómez, M

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crop water requirements are important elements for food production, especially in arid and semiarid regions. These regions are experience increasing population growth and less water for agriculture, which amplifies the need for more efficient irrigation. Improved water use efficiency is needed to produce more food while conserving water as a limited natural resource. Evaporation (E) from bare soil and Transpiration (T) from plants is considered a critical part of the global water cycle and, in recent decades, climate change could lead to increased E and T. Because energy is required to break hydrogen bonds and vaporize water, water and energy balances are closely connected. The soil water balance is also linked with water vapour losses to evapotranspiration (ET) that are dependent mainly on energy balance at the Earth’s surface. This work addresses the role of evapotranspiration for water use efficiency by developing a mathematical model that improves the accuracy of crop evapotranspiration calculation; accounting for the effects of weather conditions, e.g., wind speed and humidity, on crop coefficients, which relates crop evapotranspiration to reference evapotranspiration. The ability to partition ET into Evaporation and Transpiration components will help irrigation managers to find ways to improve water use efficiency by decreasing the ratio of evaporation to transpiration. The developed crop coefficient model will improve both irrigation scheduling and water resources planning in response to future climate change, which can improve world food production and water use efficiency in agriculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata1, 2, 3. However, uncertainties in the magnitude4, 5, 6 and consequences7, 8 of the physiological responses9, 10 of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage11. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven response of intercellular CO2 (Ci) caused by atmospheric CO2 (Ca) trends. When removing meteorological signals from the δ13C measurements, we find that trees across Europe regulated gas exchange so that for one ppmv atmospheric CO2 increase, Ci increased by ~0.76 ppmv, most consistent with moderate control towards a constant Ci/Ca ratio. This response corresponds to twentieth-century intrinsic water-use efficiency (iWUE) increases of 14 ± 10 and 22 ± 6% at broadleaf and coniferous sites, respectively. An ensemble of process-based global vegetation models shows similar CO2 effects on iWUE trends. Yet, when operating these models with climate drivers reintroduced, despite decreased stomatal opening, 5% increases in European forest transpiration are calculated over the twentieth century. This counterintuitive result arises from lengthened growing seasons, enhanced evaporative demand in a warming climate, and increased leaf area, which together oppose effects of CO2-induced stomatal closure. Our study questions changes to the hydrological cycle, such as reductions in transpiration and air humidity, hypothesized to result from plant responses to anthropogenic emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foresters frequently lack sufficient information about thinning intensity effects to optimize semi-natural forest management and their effects and interaction with climate are still poorly understood. In an Abies pinsapo–Pinus pinaster–Pinus sylvestris forest with three thinning intensities, a dendrochronologial approach was used to evaluate the short-term responses of basal area increment (BAI), carbon isotope (δ13C) and water use efficiency (iWUE) to thinning intensity and climate. Thinning generally increased BAI in all species, except for the heavy thinning in P. sylvestris. Across all the plots, thinning increased 13C-derived water-use efficiency on average by 14.49% for A. pinsapo, 9.78% for P. sylvestris and 6.68% for P. pinaster, but through different ecophysiological mechanisms. Our findings provide a robust mean of predicting water use efficiency responses from three coniferous species exposed to different thinning strategies which have been modulated by climatic conditions over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence that different light intensities strongly modulate the effects of ocean acidification (OA) on marine phytoplankton. The aim of the present study was to investigate interactive effects of OA and dynamic light, mimicking natural mixing regimes. The Antarctic diatom Chaetoceros debilis was grown under two pCO2 (390 and 1000 latm) and light conditions (constant and dynamic), the latter yielding the same integrated irradiance over the day. To characterize interactive effects between treatments, growth, elemental composition, primary production and photophysiology were investigated. Dynamic light reduced growth and strongly altered the effects of OA on primary production, being unaffected by elevated pCO2 under constant light, yet significantly reduced under dynamic light. Interactive effects between OA and light were also observed for Chl production and particulate organic carbon (POC) quotas. Response patterns can be explained by changes in the cellular energetic balance. While the energy transfer efficiency from photochemistry to biomass production (Phi_e,C) was not affected by OA under constant light, it was drastically reduced under dynamic light. Contrasting responses under different light conditions need to be considered when making predictions regarding a more stratified and acidified future ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water stress (WS) slows growth and photosynthesis (An), but most knowledge comes from short-time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (gsw) decreased to two pre-defined values for 24 d, WS was maintained at the target gsw for 29 d and then plants were re-watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (gm) of accounting for the resistance to refixation of CO2. The diffusive limitations to CO2, dominated by the stomata, were the most important constraints to An. Full recovery of An was reached after re-watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of gsw. The acclimation to long-term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water-use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the assessment of the irrigation water use has been carried out in the Spanish irrigation District “Río Adaja” that has analyzed the water use efficiency and the water productivity indicators for the main crops for three years: 2010-2011, 2011-2012 and 2012-2013. A soil water balance model was applied taking into ccount climatic data for the nearby weather station and soil properties. Crop water requirements were calculated by the FAO Penman- Monteith with the application of the dual crop coefficient and by considering the readily vailable soil water content (RAW) concept. Likewise, productivity was measured by the indexes: annual relative irrigation supply (ARIS), annual relative water supply (ARWS), relative rainfall supply (RRS), the water productivity (WP), the evapotranspiration water productivity (ETWP), and the irrigation water productivity (IWP. The results show that in most crops deficit irrigation was applied (ARIS<1) in the first two years however, the IWP improved. This was higher in 2010-2011 which corresponded to the highest effective precipitation Pe. In general, the IWP (€.m-3) varied amongcrops but crops such as: onion (4.14, 1.98 and 2.77 respectively for the three years), potato (2.79, 1.69 and 1.62 respectively for the three years), carrot (1.37, 1.70 and 1.80 respectively for the three years) and barley (1.21, 1.16 and 0.68 respectively for the three years) showed the higher values. Thus, it is highlighted the y could be included into the cropping pattern which would maximize the famer’s gross income in the irrigation district.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Edible herbage production and water-use-efficiency of three tree legumes (Leucaena leucocephala cv. Tarramba, L. pallida x L. leucocephala (KX2) and Gliricidia sepium), cut at different times of the year (February, April, June and uncut) were compared in a semi-arid area of Timor Island, Indonesia. Cutting in the early and mid dry-season (April and June) resulted in higher total leaf production (P< 0.05) and water-use-efficiency (P< 0.05), than cutting late in the wet-season (February) or being left uncut. For the leucaena treatments removing leaf in the early to mid dry-season reduced transpiration, saving soil water for subsequent regrowth as evidenced by the higher relative water contents of leaves from these treatments. This cutting strategy can be applied to local farming conditions to increase the supply of feed for livestock during the dry season.