985 resultados para pool boiling
Resumo:
This Master´s thesis investigates the performance of the Olkiluoto 1 and 2 APROS model in case of fast transients. The thesis includes a general description of the Olkiluoto 1 and 2 nuclear power plants and of the most important safety systems. The theoretical background of the APROS code as well as the scope and the content of the Olkiluoto 1 and 2 APROS model are also described. The event sequences of the anticipated operation transients considered in the thesis are presented in detail as they will form the basis for the analysis of the APROS calculation results. The calculated fast operational transient situations comprise loss-of-load cases and two cases related to a inadvertent closure of one main steam isolation valve. As part of the thesis work, the inaccurate initial data values found in the original 1-D reactor core model were corrected. The input data needed for the creation of a more accurate 3-D core model were defined. The analysis of the APROS calculation results showed that while the main results were in good accordance with the measured plant data, also differences were detected. These differences were found to be caused by deficiencies and uncertainties related to the calculation model. According to the results the reactor core and the feedwater systems cause most of the differences between the calculated and measured values. Based on these findings, it will be possible to develop the APROS model further to make it a reliable and accurate tool for the analysis of the operational transients and possible plant modifications.
Resumo:
The condensation rate has to be high in the safety pressure suppression pool systems of Boiling Water Reactors (BWR) in order to fulfill their safety function. The phenomena due to such a high direct contact condensation (DCC) rate turn out to be very challenging to be analysed either with experiments or numerical simulations. In this thesis, the suppression pool experiments carried out in the POOLEX facility of Lappeenranta University of Technology were simulated. Two different condensation modes were modelled by using the 2-phase CFD codes NEPTUNE CFD and TransAT. The DCC models applied were the typical ones to be used for separated flows in channels, and their applicability to the rapidly condensing flow in the condensation pool context had not been tested earlier. A low Reynolds number case was the first to be simulated. The POOLEX experiment STB-31 was operated near the conditions between the ’quasi-steady oscillatory interface condensation’ mode and the ’condensation within the blowdown pipe’ mode. The condensation models of Lakehal et al. and Coste & Lavi´eville predicted the condensation rate quite accurately, while the other tested ones overestimated it. It was possible to get the direct phase change solution to settle near to the measured values, but a very high resolution of calculation grid was needed. Secondly, a high Reynolds number case corresponding to the ’chugging’ mode was simulated. The POOLEX experiment STB-28 was chosen, because various standard and highspeed video samples of bubbles were recorded during it. In order to extract numerical information from the video material, a pattern recognition procedure was programmed. The bubble size distributions and the frequencies of chugging were calculated with this procedure. With the statistical data of the bubble sizes and temporal data of the bubble/jet appearance, it was possible to compare the condensation rates between the experiment and the CFD simulations. In the chugging simulations, a spherically curvilinear calculation grid at the blowdown pipe exit improved the convergence and decreased the required cell count. The compressible flow solver with complete steam-tables was beneficial for the numerical success of the simulations. The Hughes-Duffey model and, to some extent, the Coste & Lavi´eville model produced realistic chugging behavior. The initial level of the steam/water interface was an important factor to determine the initiation of the chugging. If the interface was initialized with a water level high enough inside the blowdown pipe, the vigorous penetration of a water plug into the pool created a turbulent wake which invoked the chugging that was self-sustaining. A 3D simulation with a suitable DCC model produced qualitatively very realistic shapes of the chugging bubbles and jets. The comparative FFT analysis of the bubble size data and the pool bottom pressure data gave useful information to distinguish the eigenmodes of chugging, bubbling, and pool structure oscillations.
Resumo:
This research focused on operation of a manpower pool within a service business unit in Company X and aimed to identify how the operation should be improved in order to get most out of it concerning the future prospects of the service business unit. This was done by analyzing the current state of the manpower pool related operations in means of project business, project management and business models. The objective was to deepen the understanding and to highlight possible areas of improvement. The research was conducted as a qualitative single-case study utilizing also an action research method; the research approach was a combination of conceptual, action-oriented and constructive approaches. The primary data was collected with executing a comprehensive literature review and semi-structured theme interviews. The main results described how the manpower pool operates as part of the service business unit in project business by participating in different types of delivery projects; process flows for the project types were mapped. Project management was analyzed especially from the resource management point of view, and an Excel-based skills analysis model was constructed for this purpose. Utilization of operational business models was also studied to define strategic direction for development activities. The results were benchmarked against two competitors in order to specify lessons to be learnt from their use of operational business models.
Resumo:
Pregnant cows infected with noncytopathic (NCP) isolates of bovine viral diarrhea virus (BVDV) between days 40 and 120 days of gestation frequently deliver immunotolerant, persistently infected (PI) calves. We herein report the characterization of PI calves produced experimentally through inoculation of pregnant cows with a pool of Brazilian BVDV-1 (n=2) and BVDV-2 isolates (n=2) between days 60 and 90 of gestation. Two calves were born virus positive, lacked BVDV antibodies, but died 7 and 15 days after birth, respectively. Six other calves were born healthy, seronegative to BVDV, harbored and shed virus in secretions for up to 210 days. Analysis of the antigenic profile of viruses infecting these calves at birth and 30 days later with a panel of monoclonal antibodies indicated two patterns of infection. Whereas three calves apparently harbored only one isolate (either a BVDV-1 or BVDV-2), co-infection by two antigenically distinct challenge viruses was demonstrated in three PI calves. Moreover, testing the viruses obtained from the blood of PI calves by an RT-PCR able to differentiate between BVDV-1 and BVDV-2 confirmed the presence/persistence of two co-infecting viruses of different genotypes (BVDV-1 and BVDV-2) in these animals. These findings indicate that persistent infection of fetuses/calves - a well characterized consequence of fetal infection by BVDV - may be established concomitantly by more than one isolate, upon experimental inoculation. In this sense, mixed persistent infections with antigenically distinct isolates may help in understanding the immunological and molecular basis of BVDV immunotolerance and persistence.
Resumo:
The experimental technique used for detection of subcooled boiling through analysis of the fluctuation contained in pressure transducer signals is presented. This work was partly conducted at the Institut für Kerntechnik und zertörungsfreie Prüfverfahren von Hannover (IKPH, Germany) in a thermal-hydraulic circuit with one electrically heated rod with annular geometry test section. Piezoresistive pressure sensors are used for onset of nucleate boiling (ONB) and onset of fully developed boiling (OFDB) detection using spectral analysis/ signal correlation techniques. Experimental results are interpreted by phenomenological analysis of these two points and compared with existing correlation. The results allow us to conclude that this technique is adequate for the detection and monitoring of the ONB and OFDB.
Resumo:
Keyhole welding, meaning that the laser beam forms a vapour cavity inside the steel, is one of the two types of laser welding processes and currently it is used in few industrial applications. Modern high power solid state lasers are becoming more used generally, but not all process fundamentals and phenomena of the process are well known and understanding of these helps to improve quality of final products. This study concentrates on the process fundamentals and the behaviour of the keyhole welding process by the means of real time high speed x-ray videography. One of the problem areas in laser welding has been mixing of the filler wire into the weld; the phenomena are explained and also one possible solution for this problem is presented in this study. The argument of this thesis is that the keyhole laser welding process has three keyhole modes that behave differently. These modes are trap, cylinder and kaleidoscope. Two of these have sub-modes, in which the keyhole behaves similarly but the molten pool changes behaviour and geometry of the resulting weld is different. X-ray videography was used to visualize the actual keyhole side view profile during the welding process. Several methods were applied to analyse and compile high speed x-ray video data to achieve a clearer image of the keyhole side view. Averaging was used to measure the keyhole side view outline, which was used to reconstruct a 3D-model of the actual keyhole. This 3D-model was taken as basis for calculation of the vapour volume inside of the keyhole for each laser parameter combination and joint geometry. Four different joint geometries were tested, partial penetration bead on plate and I-butt joint and full penetration bead on plate and I-butt joint. The comparison was performed with selected pairs and also compared all combinations together.
Resumo:
Cells possess multiple intracellular Ca2+-releasing systems. Sea urchin egg homogenates are a well-established model to study intracellular Ca2+ release. In the present study the mechanism of interaction between three intracellular Ca2+ pools, namely the nicotinic acid adenine dinucleotide phosphate (NAADP), the cyclic ADP-ribose (cADPR) and the inositol 1',4',5'-trisphosphate (IP3)-regulated Ca2+ stores, is explored. The data indicate that the NAADP Ca2+ pool could be used to sensitize the cADPR system. In contrast, the IP3 pool was not affected by the Ca2+ released by NAADP. The mechanism of potentiation of the cADPR-induced Ca2+ release, promoted by Ca2+ released from the NAADP pool, is mediated by the mechanism of Ca2+-induced Ca2+ release. These data raise the possibility that the NAADP Ca2+ store may have a role as a regulator of the cellular sensitivity to cADPR.
Resumo:
The objective of this thesis is to develop and generalize further the differential evolution based data classification method. For many years, evolutionary algorithms have been successfully applied to many classification tasks. Evolution algorithms are population based, stochastic search algorithms that mimic natural selection and genetics. Differential evolution is an evolutionary algorithm that has gained popularity because of its simplicity and good observed performance. In this thesis a differential evolution classifier with pool of distances is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, to determine the optimal values for all free parameters of the classifier model during the training phase of the classifier. The differential evolution classifier applies the individually optimized distance measure for each new data set to be classified is generalized to cover a pool of distances. Instead of optimizing a single distance measure for the given data set, the selection of the optimal distance measure from a predefined pool of alternative measures is attempted systematically and automatically. Furthermore, instead of only selecting the optimal distance measure from a set of alternatives, an attempt is made to optimize the values of the possible control parameters related with the selected distance measure. Specifically, a pool of alternative distance measures is first created and then the differential evolution algorithm is applied to select the optimal distance measure that yields the highest classification accuracy with the current data. After determining the optimal distance measures for the given data set together with their optimal parameters, all determined distance measures are aggregated to form a single total distance measure. The total distance measure is applied to the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; a sample belongs to the class represented by the nearest prototype vector when measured with the optimized total distance measure. During the training process the differential evolution algorithm determines the optimal class vectors, selects optimal distance metrics, and determines the optimal values for the free parameters of each selected distance measure. The results obtained with the above method confirm that the choice of distance measure is one of the most crucial factors for obtaining higher classification accuracy. The results also demonstrate that it is possible to build a classifier that is able to select the optimal distance measure for the given data set automatically and systematically. After finding optimal distance measures together with optimal parameters from the particular distance measure results are then aggregated to form a total distance, which will be used to form the deviation between the class vectors and samples and thus classify the samples. This thesis also discusses two types of aggregation operators, namely, ordered weighted averaging (OWA) based multi-distances and generalized ordered weighted averaging (GOWA). These aggregation operators were applied in this work to the aggregation of the normalized distance values. The results demonstrate that a proper combination of aggregation operator and weight generation scheme play an important role in obtaining good classification accuracy. The main outcomes of the work are the six new generalized versions of previous method called differential evolution classifier. All these DE classifier demonstrated good results in the classification tasks.
Resumo:
The calyx of Held, a specialized synaptic terminal in the medial nucleus of the trapezoid body, undergoes a series of changes during postnatal development that prepares this synapse for reliable high frequency firing. These changes reduce short-term synaptic depression during tetanic stimulation and thereby prevent action potential failures during a stimulus train. We measured presynaptic membrane capacitance changes in calyces from young postnatal day 5-7 (p5-7) or older (p10-12) rat pups to examine the effect of calcium buffer capacity on vesicle pool size and the efficiency of exocytosis. Vesicle pool size was sensitive to the choice and concentration of exogenous Ca2+ buffer, and this sensitivity was much stronger in younger animals. Pool size and exocytosis efficiency in p5-7 calyces were depressed by 0.2 mM EGTA to a greater extent than with 0.05 mM BAPTA, even though BAPTA is a 100-fold faster Ca2+ buffer. However, this was not the case for p10-12 calyces. With 5 mM EGTA, exocytosis efficiency was reduced to a much larger extent in young calyces compared to older calyces. Depression of exocytosis using pairs of 10-ms depolarizations was reduced by 0.2 mM EGTA compared to 0.05 mM BAPTA to a similar extent in both age groups. These results indicate a developmentally regulated heterogeneity in the sensitivity of different vesicle pools to Ca2+ buffer capacity. We propose that, during development, a population of vesicles that are tightly coupled to Ca2+ channels expands at the expense of vesicles more distant from Ca2+ channels.
Resumo:
This thesis addresses the coolability of porous debris beds in the context of severe accident management of nuclear power reactors. In a hypothetical severe accident at a Nordic-type boiling water reactor, the lower drywell of the containment is flooded, for the purpose of cooling the core melt discharged from the reactor pressure vessel in a water pool. The melt is fragmented and solidified in the pool, ultimately forming a porous debris bed that generates decay heat. The properties of the bed determine the limiting value for the heat flux that can be removed from the debris to the surrounding water without the risk of re-melting. The coolability of porous debris beds has been investigated experimentally by measuring the dryout power in electrically heated test beds that have different geometries. The geometries represent the debris bed shapes that may form in an accident scenario. The focus is especially on heap-like, realistic geometries which facilitate the multi-dimensional infiltration (flooding) of coolant into the bed. Spherical and irregular particles have been used to simulate the debris. The experiments have been modeled using 2D and 3D simulation codes applicable to fluid flow and heat transfer in porous media. Based on the experimental and simulation results, an interpretation of the dryout behavior in complex debris bed geometries is presented, and the validity of the codes and models for dryout predictions is evaluated. According to the experimental and simulation results, the coolability of the debris bed depends on both the flooding mode and the height of the bed. In the experiments, it was found that multi-dimensional flooding increases the dryout heat flux and coolability in a heap-shaped debris bed by 47–58% compared to the dryout heat flux of a classical, top-flooded bed of the same height. However, heap-like beds are higher than flat, top-flooded beds, which results in the formation of larger steam flux at the top of the bed. This counteracts the effect of the multi-dimensional flooding. Based on the measured dryout heat fluxes, the maximum height of a heap-like bed can only be about 1.5 times the height of a top-flooded, cylindrical bed in order to preserve the direct benefit from the multi-dimensional flooding. In addition, studies were conducted to evaluate the hydrodynamically representative effective particle diameter, which is applied in simulation models to describe debris beds that consist of irregular particles with considerable size variation. The results suggest that the effective diameter is small, closest to the mean diameter based on the number or length of particles.
Resumo:
Herb de Bray standing at the edge of the soon to be completed pool of the Elanor Misner Aquatic Center.
Resumo:
The Brock pool as it begins to be filled with water.