946 resultados para polymeric ionic liquids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental measurements of density at different temperatures ranging from 293.15 to 313.15 K, the speed of sound and osmotic coefficients at 298.15 K for aqueous solution of 1-ethyl-3-methylimidazolium bromide ([Emim][Br]), and osmotic coefficients at 298.15 K for aqueous solutions of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) in the dilute concentration region are taken. The data are used to obtain compressibilities, expansivity, apparent and limiting molar properties, internal pressure, activity, and activity coefficients for [Emim][Br] in aqueous solutions. Experimental activity coefficient data are compared with that obtained from Debye-Hückel and Pitzer models. The activity data are further used to obtain the hydration number and the osmotic second virial coefficients of ionic liquids. Partial molar entropies of [Bmim][Cl] are also obtained using the free-energy and enthalpy data. The distance of the closest approach of ions is estimated using the activity data for ILs in aqueous solutions and is compared with that of X-ray data analysis in the solid phase. The measured data show that the concentration dependence for aqueous solutions of [Emim][Br] can be accounted for in terms of the hydrophobic hydration of ions and that this IL exhibits Coulombic interactions as well as hydrophobic hydration for both the cations and anions. The small hydration numbers for the studied ILs indicate that the low charge density of cations and their hydrophobic nature is responsible for the formation of the water-structure-enforced ion pairs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extension of the Ye and Shreeve group contribution method [C. Ye, J.M. Shreeve, J. Phys. Chem. A 111 (2007) 1456–1461] for the estimation of densities of ionic liquids (ILs) is here proposed. The new version here presented allows the estimation of densities of ionic liquids in wide ranges of temperature and pressure using the previously proposed parameter table. Coefficients of new density correlation proposed were estimated using experimental densities of nine imidazolium-based ionic liquids. The new density correlation was tested against experimental densities available in literature for ionic liquids based on imidazolium, pyridinium, pyrrolidinium and phosphonium cations. Predicted densities are in good agreement with experimental literature data in a wide range of temperatures (273.15–393.15 K) and pressures (0.10–100 MPa). For imidazolium-based ILs, the mean percent deviation (MPD) is 0.45% and 1.49% for phosphonium-based ILs. A low MPD ranging from 0.41% to 1.57% was also observed for pyridinium and pyrrolidinium-based ILs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquids (ILs) have attracted large amount of interest due to their unique properties. Although large effort has been focused on the investigation of their potential application, characterization of ILs properties and structure–property relationships of ILs are poorly understood. Computer aided molecular design (CAMD) of ionic liquids (ILs) can only be carried if predictive computational methods for the ILs properties are available. The limited availability of experimental data and their quality have been preventing the development of such tools. Based on experimental surface tension data collected from the literature and measured at our laboratory, it is here shown how a quantitative structure–property relationship (QSPR) correlation for parachors can be used along with an estimation method for the densities to predict the surface tensions of ILs. It is shown that a good agreement with literature data is obtained. For circa 40 ionic liquids studied a mean percent deviation (MPD) of 5.75% with a maximum deviation inferior to 16% was observed. A correlation of the surface tensions with the molecular volumes of the ILs was developed for estimation of the surface tensions at room temperature. It is shown that it can describe the experimental data available within a 4.5% deviation. The correlations here developed can thus be used to evaluate the surface tension of ILs for use in process design or in the CAMD of new ionic liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experimental measurements of the speed of sound and density of aqueous solutions of imidazolium based ionic liquids (IL) in the concentration range of 0.05 mol · kg-1 to 0.5 mol · kg-1 at T = 298.15 K are reported. The data are used to obtain the isentropic compressibility (ßS) of solutions. The apparent molar volume (phiV) and compressibility (phiKS) of ILs are evaluated at different concentrations. The data of limiting partial molar volume and compressibility of IL and their concentration variation are examined to evaluate the effect due to IL–water and IL–IL interactions. The results have been discussed in terms of hydrophobic hydration, hydrophobic interactions, and water structural changes in aqueous medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on experimental viscosity data collected from the literature and using density data obtained from a predictive method previously proposed by the authors, a group contribution method is proposed to estimate viscosity of imidazolium-, pyridinium-, and pyrrolidinium-based ILs containing hexafluorophosphate (PF6), tetrafluoroborate (BF4), bis(trifluoromethanesulfonyl) amide (Tf2N), chloride (Cl), acetate (CH3COO), methyl sulfate (MeSO4), ethyl sulfate (EtSO4), and trifluoromethanesulfonate (CF3SO3) anions, covering wide ranges of temperature, 293–393 K and viscosity, 4–21,000 cP. It is shown that a good agreement with literature data is obtained. For circa 500 data points of 29 ILs studied, a mean percent deviation (MPD) of 7.7% with a maximum deviation smaller than 28% was observed. 71.1% of the estimated viscosities present deviations smaller than 10% of the experimental values while only 6.4% have deviations larger than 20%. The group contribution method here developed can thus be used to evaluate the viscosity of new ionic liquids in wide ranges of temperatures at atmospheric pressure and, as data for new groups of cations and anions became available, can be extended to a larger range of ionic liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The limited availability of experimental data and their quality have been preventing the development of predictive methods and Computer Aided Molecular Design (CAMD) of ionic liquids (ILs). Based on experimental speed of sound data collected from the literature, the inter-relationship of surface tension (s), density (?), and speed of sound (u) has been examined for imidazolium based ILs containing hexafluorophosphate (PF6), tetrafluoroborate (BF4), bis(trifluoromethanesulphonyl) amide (NTf2), methyl sulphate (MeSO4), ethyl sulphate (EtSO4), and trifluoromethanesulphonate (CF3SO3) anions, covering wide ranges of temperature, 278.15–343.15 K and speed of sound, 1129.0–1851.0 m s-1. The speed of sound was correlated with a modified Auerbach's relation, by using surface tension and density data obtained from volume based predictive methods previously proposed by the authors. It is shown that a good agreement with literature data is obtained. For 133 data points of 14 ILs studied a mean percent deviation (MPD) of 1.96% with a maximum deviation inferior to 5% was observed. The correlations developed here can thus be used to evaluate the speeds of sound of new ionic liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using cyclic voltammetry, the electrochemical reduction of benzoic acid (BZA) has been studied at Pt and Au microelectrodes (10 and 2 mu m diameter) in six room temperature ionic liquids (RTILs), namely [C(2)mim][NTf2], [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][BF4], [C(4)mim][NO3], and [C(4)mim][PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [BF4](-) = tetrafluoroborate, [NO3](-) = nitrate, and [PF6](-) = hexafluorophosphate). In all cases, a main reduction peak was observed, assigned to the reduction of BZA in a CE mechanism, where dissociation of the acid takes place before electron transfer to the dissociated proton. One anodic peak was observed on the reverse sweep, assigned to the oxidation of adsorbed hydrogen, and a reductive

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extraction of electrode kinetic parameters for electrochemical couples in room-temperature ionic liquids (RTILs) is currently an area of considerable interest. Electrochemists typically measure electrode kinetics in the limits of either transient planar or steady-state convergent diffusion for which the voltammetic response is well understood. In this paper we develop a general method allowing the extraction of this kinetic data in the region where the diffusion is intermediate between the planar and convergent limits, such as is often encountered in RTILs using microelectrode voltammetry. A general working surface is derived, allowing the inference of Butler-Volmer standard electrochemical rate constants for the peak-to-peak potential separation in a cyclic voltammogram as a function of voltage scan rate. The method is applied to the case of the ferrocene/ferrocenium couple in [C(2)mim][N(Tf)(2)] and [C(4)mim][N(Tf)(2)].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of hydrogen was studied at an activated platinum micro-electrode by cyclic voltammetry in the following ionic liquids: [C(2)mim][NTf2], [C(4)mim][NTf2], [N-6.2.2.2][NTf2], [P-14.6.6.6][NTf2], [C(4)mim][OTf], [C(4)mim][BF4] [C(4)mim][PF6], [C(4)mim][NO3], [C(6)mim]Cl and [C(6)mim][FAP] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [N-6,N-2,N-2,N-2](+) = n-hexyltriethylammonium, [P-14,P-6,P-6,P-6](+) = tris(n-hexyltetradecyl) phosphonium, [NTf2](-) = bis(trifluoromethylsulfonyl)amide, [OTf] = trifluoromethlysulfonate and [FAP](-) = tris(perfluoroethyl)trifluorophosphate). Activation of the Pt electrode was necessary to obtain reliable and reproducible voltammetry. After activation of the electrode, the H-2 oxidation waves were nearly electrochemically and chemically reversible in [C(n)mim][NTf2] ionic liquids, chemically irreversible in [C(6)mim]Cl and [C(4)mim][NO3], and showed intermediate characteristics in OTf-, [BF4](-), [PF6](-), [FAP](-) and other [NTf2](-)-based ionic liquids. These differences reflect the contrasting interactions of protons with the respective RTIL anions. The oxidation peaks are reported relative to the half-wave potential of the cobaltocenium/cobaltocene redox couple in all ionic liquids studied, giving an indication of the relative proton interactions of each ionic liquid. A preliminary temperature study (ca. 298-333 K) has also been carried out in some of the ionic liquids. Diffusion coefficients and solubilities of hydrogen at 298 K were obtained from potential-step chronoamperometry, and there was no relationship found between the diffusion coefficients and solvent viscosity. RTILs possessing [NTf2](-) and [FAP](-) anions showed the highest micro-electrode peak currents for the oxidation in H-2 saturated solutions, with[C(4)mim][NTf2] toeing the most sensitive. The large number of available RTIL anion/cation pairs allows scope for the possible electrochemical detection of hydrogen gas for use in gas sensor technology. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical reduction of I atm hydrogen sulfide gas (H2S) has been studied at a platinum microelectrode (10 mu m diameter) in five room temperature ionic liquids (RTILs): [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3] and [C(4)mim]][PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [OTf](-) = trifluoromethlysulfonate, [NO3](-) = nitrate, and [PF6](-) = hexafluorophosphate). In all five RTILs, a chemically irreversible reduction peak was observed on the reductive sweep, followed by one or two oxidative peaks on the reverse scan. The oxidation peaks were assigned to the oxidation of SH- and adsorbed hydrogen. In addition, a small reductive peak was observed prior to the large wave in [C(2)mim]][NTf2] only, which may be due to the reduction of a sulfur impurity in the gas. Potential-step chronoamperometry was carried out on the reduction peak of H2S, revealing diffusion coefficients of 3.2, 4.6, 2.4, 2.7, and 3.1 x 10(-11) m(2) s(-1) and solubilities of 529, 236, 537, 438, and 230 mM in [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3], and [C(4)mim]][PF6], respectively. The solubilities of H2S in RTILs are much higher than those reported in conventional molecular solvents, suggesting that RTILs may be very favorable gas sensing media for H2S detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical oxidation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) has been studied by cyclic voltammetry and potential step chronoamperometry at 303 K in five ionic liquids, namely [C(2)mim] [NTf2], [C(4)mim] [NTf2] [C(4)mpyrr] [NTf2] [C(4)mim] [BF4], and [C(4)mim] [PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [BF4](-) = tetrafluoroborate, and [PF6](-) = hexafluorophosphate). Diffusion coefficients, D, of 4.87, 3.32, 2.05, 1.74, and 1.34 x 10(-11) m(2) s(-1) and heterogeneous electron-transfer rate constants, k(0), of 0.0109, 0.0103, 0.0079, 0.0066, and 0.0059 cm s(-1) were calculated for TMPD in [C(2)mim] [NTf2], [C(4)mim] [NTf2], [C(4)mpyrr] [NTf2], [C(4)mim] [BF4], and [C(4)mim] [PF6], respectively, at 303 K. The oxidation of TMPD in [C4mim][PF6] was also carried out at increasing temperatures from 303 to 343 K, with an activation energy for diffusion of 32.3 kJ mol(-1). k(0) was found to increase systematically with increasing temperature, and an activation energy of 31.4 kJ mol(-1) was calculated. The study was extended to six other p-phenylenediamines with alkyl/phenyl group substitutions. D and k(0) values were calculated for these compounds in [C(2)mim] [NTf2], and it was found that k(0) showed no obvious relationship with the hydrodynamic radius, r.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticles of silver halides have been prepared by mixing silver halide powder with a single liquid phase consisting of an ionic liquid, isooctane, n-decanol and water. Much higher nanoparticle concentrations may be formed with ionic liquids using this new simple method than are found with conventionally applied surfactants. This method also emphasizes the applicability of ionic liquids as versatile components in microemulsions and as solvents for the synthesis of nanomaterials. The effect on the nanoparticles of changing the composition of the liquid mixtures and the nature of the ionic liquid is analysed. High nanoparticle concentrations were only found with chloride based ionic liquids, indicating the importance of the ionic liquid anion in the mechanism of the reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous immobilized ionic liquid catalysts were prepared via grafting of 1,3-dimethyl-3-(3-triethoxysilylpropyl)-imidazolium tetrafluoroborate or bist{(trifluoromethyl)sulfonyl} imide ([NTf2](-)) on silica supports with different surfaces and pore size. In addition to the adsorption-desorption isotherms of nitrogen at -196C, the catalysts were characterized by TG-DTA, XPS, DRIFTS, DR-UV-vis, NMR, and XRD techniques. The catalytic behavior was checked in the acylation of three different sulfonamines: benzenesulfonamine, p-nitrobenzene-sulfonamine, and p-methoxybenzene-sulfonamine with acetic acid, acetic anhydride and maleic anhydride. These tests confirmed the acid Lewis properties of these catalysts. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of sulfur dioxide reduction at a platinum microelectrode was investigated by cyclic voltammetry in several room-temperature ionic liquids (RTILs)-[C(2)mim][NTf2], [C(4)mim][BF4], [C(4)mim][NO3], [C(4)mim][PF6], and [C(6)mim][Cl] where [C(2)mim] is 1-ethyl-3-methylimidazolium, [C(4)mim] is 1-butyl-3-methylimidazolium, [C(6)mim] is 1-hexyl-3-methylimidazolium, and [NTf2] is bis(trifluoromethylsufonyl)imide-with special attention paid to [C(4)mim][NO3] because of the well-defined voltammetry, high solubility, and relatively low diffusion coefficient of SO2 obtained in that ionic liquid. A cathodic peak is observed in all RTILs between -2.0 and -1.0 V versus a silver quasi-reference electrode. In [C(4)mim][NO3], the peak appears at -1.0 V, and potential step chronoamperometry was used to determine that SO2 has a very high solubility of 3100 (+/-450) mM and a diffusion coefficient of 5.0 (+/-0.8) x 10(-10) m(2) s(-1) in that ionic liquid. On the reverse wave, up to four anodic peaks are observed at ca. -0.4, -0.3, -0.2, and 0.2 V in [C(4)mim][NO3]. The cathodic wave is assigned to the reduction of SO2 to its radical anion, SO2-center dot. The peaks at -0.4 and -0.2 V are assigned to the oxidation of unsolvated and solvated SO2-center dot, respectively. The peak appearing at 0.2 V is assigned to the oxidation of either S2O42- or S2O4-center dot. The activation energy for the reduction of SO2 in [C(4)mim][NO3] was measured to be 10 (+/-2) kJ mol(-1) using chronoamperometric data at different temperatures. The stabilizing interaction of the solvent with the reduced species SO2-center dot leads to a different mechanism than that observed in conventional aprotic solvents. The high sensitivity of the system to SO2 also suggests that [C(4)mim][NO3] may be a viable solvent in gas sensing applications.