992 resultados para polymer optical flber (POF)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing interest for esophageal measurements which can provide important and reliable data when diagnosing the motor function of the sphincters and the esophageal body. Biocompatibility, sensing resolution and the comfort of the patient are key parameters for manometric sensing systems. A new sensing approach which could fulfill all these needs is presented in this paper consisting of an embedded polymer fiber sensor, based on multiplexed fiber Bragg gratings. A response to a radial pressure almost 6 times that of a comparable silica fiber based sensor is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water is a common impurity of jet fuel, and can exist in three forms: dissolved in the fuel, as a suspension and as a distinct layer at the bottom of the fuel tank. Water cannot practically be eliminated from fuel but must be kept to a minimum as large quantities can cause engine problems, particularly when frozen, and the interface between water and fuel acts as a breeding ground for biological contaminants. The quantities of dissolved or suspended water are quite small, ranging from about 10 ppm to 150 ppm. This makes the measurement task difficult and there is currently a lack of a convenient, electrically passive system for water-in-fuel monitoring; instead the airlines rely on colorimetric spot tests or simply draining liquid from the bottom of fuel tanks. For all these reason, people have explored different ways to detect water in fuel, however all these approaches have problems, e.g. they may not be electrically passive or they may be sensitive to the refractive index of the fuel. In this paper, we present a simple, direct and sensitive approach involving the use of a polymer optical fibre Bragg grating to detect water in fuel. The principle is that poly(methyl methacrylate) (PMMA) can absorb moisture from its surroundings (up to 2% at 23 °C), leading to both a swelling of the material and an increase in refractive index with a consequent increase in the Bragg wavelength of a grating inscribed in the material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Letter, we report the fabrication of a highly photosensitive, microstructured polymer optical fiber using benzyl dimethyl ketal as a dopant, as well as the inscription of a fiber Bragg grating in the fiber. A refractive index change in the core of at least 3.2 × 10 has been achieved, providing a grating with a strong transmission rejection of -23 dB with an inscription time of only 13 min. The fabrication method has a big advantage compared to doping step index fiber since it enables doping of the fiber without using extra dopants to compensate for the index reduction in the core introduced by the photosensitive agent. © 2013 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the production and characterization of FC/PC connectorised fibre Bragg grating sensors in polymer fibre. Sensors were recorded in few-moded and single mode microstructured fibre composed of poly (methyl methacrylate). © 2013 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a characterization of the acoustic sensitivity of microstructured polymer optical fiber interferometric sensors at ultrasonic frequencies from 100kHz to 10MHz. The use of wide-band ultrasonic fiber optic sensors in biomedical ultrasonic and optoacoustic applications is an open alternative to conventional piezoelectric transducers. These kind of sensors, made of biocompatible polymers, are good candidates for the sensing element in an optoacoustic endoscope because of its high sensitivity, its shape and its non-brittle and non-electric nature. The acoustic sensitivity of the intrinsic fiber optic interferometric sensors depends strongly of the material which is composed of. In this work we compare experimentally the intrinsic ultrasonic sensitivities of a PMMA mPOF with other three optical fibers: a singlemode silica optical fiber, a single-mode polymer optical fiber and a multimode graded-index perfluorinated polymer optical fiber. © 2014 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a review of the current state of research and development into polymer fibre Bragg gratings, along with a description of some current challenges. © 2012 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(methyl methacrylate) (PMMA) based polymer optical fiber Bragg gratings have been used for measuring water activity of aviation fuel. Jet A-1 samples with water content ranging from 100% ERH (wet fuel) to 10 ppm (dried fuel), have been conditioned and calibrated for measurement. The PMMA based optical fiber grating exhibits consistent response and a good sensitivity of 59±3pm/ppm (water content in mass). This water activity measurement allows PMMA based optical fiber gratings to detect very tiny amounts of water in fuels that have a low water saturation point, potentially giving early warning of unsafe operation of a fuel system. © 2014 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report on investigations of some of the factors that have a bearing on the reliability and repeatability of polymer fibre Bragg gratings. The main issues discussed are the fibre preform composition, the fibre drawing conditions and the thermal history of the fibre grating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present what is to our knowledge the first demonstration of a tunable fiber Bragg grating device in polymer optical fiber that utilizes a thin-film resistive heater deposited on the surface of the fiber. The polymer fiber was coated via photochemical deposition of a Pd/Cu metallic layer with a procedure induced by vacuum-ultraviolet radiation at room temperature. The resulting device, when wavelength tuned via joule heating, underwent a wavelength shift of 2 nm for a moderate input power of 160 mW, a wavelength to input power coefficient of-13.4 pm/mW, and a time constant of 1.7 s-1. © 2007 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report experimental measurements of the strain and temperature sensitivity of the optical phase in a singlemode polymer optical fibre. These values were obtained by measuring optical path length change using a Mach-Zender interferometer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, much of the development work associated with polymer optical fibre (POF) applications has been aimed at exploiting the potential of the technology to provide low cost solutions. Here we argue that, in the sensing area at least, POF offers a number of other, more relevant advantages. In this paper we describe work on a range of devices based on photoinscribed gratings and on fibre interferometers, which are designed to take advantage of the unique properties of POF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlling the water content within a product has long been required in the chemical processing, agriculture, food storage, paper manufacturing, semiconductor, pharmaceutical and fuel industries. The limitations of water content measurement as an indicator of safety and quality are attributed to differences in the strength with which water associates with other components in the product. Water activity indicates how tightly water is "bound," structurally or chemically, in products. Water absorption introduces changes in the volume and refractive index of poly(methyl methacrylate) PMMA. Therefore for a grating made in PMMA based optical fiber, its wavelength is an indicator of water absorption and PMMA thus can be used as a water activity sensor. In this work we have investigated the performance of a PMMA based optical fiber grating as a water activity sensor in sugar solution, saline solution and Jet A-1 aviation fuel. Samples of sugar solution with sugar concentration from 0 to 8%, saline solution with concentration from 0 to 22%, and dried (10ppm), ambient (39ppm) and wet (68ppm) aviation fuels were used in experiments. The corresponding water activities are measured as 1.0 to 0.99 for sugar solution, 1.0 to 0.86 for saline solution, and 0.15, 0.57 and 1.0 for the aviation fuel samples. The water content in the measured samples ranges from 100% (pure water) to 10 ppm (dried aviation fuel). The PMMA based optical fiber grating exhibits good sensitivity and consistent response, and Bragg wavelength shifts as large as 3.4 nm when the sensor is transferred from dry fuel to wet fuel. © 2014 Copyright SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the effects of viscoelasticity on both the strength and resonance wavelength of two fibre Bragg gratings (FBGs) inscribed in microstructured polymer optical fibre (mPOF) made of undoped PMMA. Both FBGs were inscribed under a strain of 1% in order to increase the material photosensitivity. After the inscription the strain was released and the FBGs spectra were monitored. We initially observed a decrease of the reflection down to zero after which it began to increase. After that, strain tests were carried out to confirm the results and finally the gratings were monitored for a further 120 days, with a stable reflection response being observed beyond 50 days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transmission loss in polymer optical fiber (POF) is much higher than that in silica fiber. Very strong absorption bands dominate throughout the visible and near infrared. Optical absorption increases the internal temperature of the polymer fiber and reduces the wavelength of any POF Bragg grating (POFBG) inscribed within the fiber. In this letter, we have investigated the wavelength drift of FBGs inscribed in poly(methyl methacrylate)-based fiber under illumination at different wavelengths. The experiments have shown that the characteristic wavelength of such a POFBG starts decreasing after a light source is applied to it. This decrease continues until equilibrium inside the fiber is established, depending on the surrounding humidity, optical power applied, and operation wavelength.