997 resultados para platinum-ruthenium alloy
Resumo:
The research described herein relates to studies into the Aqueous Ring-Opening Metathesis Polymerisation (ROMP) of bicyclic monomers using ruthenium complex catalysts. Two monomers were synthesised for the purpose of these studies, namely exo, exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid (7-oxanorbornenedicarboxylic acid) and exo, exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid (norbornene dicarboxylic acid). A number of ruthenium complexes were synthesised, amongst them a novel complex containing the water soluble phosphine ligand trist(hydroxymethyl)phosphine P(CH2OH)3. Its synthesis and characterisation are described and its physical properties compared and contrasted to analogous compounds of platinum and palladium. Its peculiar properties are ascribed to a trans-placement of the phosphine ligands. Dilatometry was investigated as a technique for the acquisition of kinetic data from aqueous metathesis reactions. For the attempted polymerisation of 7-oxanorbonenedicarboxylic acid the results are explained in terms of a reverse Diels-Alder reaction of the monomer. The reaction between Ru(CO)Cl2(H2O) and 7-oxanorbonenedicarboxylic acid was monitored using UV/Vis spectrometry and kinetic data retrieved. The data are explained in terms of a two stage reaction consisting of consecutive first order processes.The reaction between 7-oxanorbornenedicarboxylic acid and Ru(CO)Cl2(H2O) or Ru(P(CH2OH)3)3Cl2 was found to produce fumaric acid as one of the major products. This reaction is previously unreported in the literature and a mechanism is proposed.
Resumo:
We synthesized nanoscale TiO2-RuO2 alloys by atomic layer deposition (ALD) that possess a high work function and are highly conductive. As such, they function as good Schottky contacts to extract photogenerated holes from n-type silicon while simultaneously interfacing with water oxidation catalysts. The ratio of TiO2 to RuO2 can be precisely controlled by the number of ALD cycles for each precursor. Increasing the composition above 16% Ru sets the electronic conductivity and the metal work function. No significant Ohmic loss for hole transport is measured as film thickness increases from 3 to 45 nm for alloy compositions >= 16% Ru. Silicon photoanodes with a 2 nm SiO2 layer that are coated by these alloy Schottky contacts having compositions in the range of 13-46% Ru exhibit average photovoltages of 525 mV, with a maximum photovoltage of 570 mV achieved. Depositing TiO2-RuO2 alloys on nSi sets a high effective work function for the Schottky junction with the semiconductor substrate, thus generating a large photovoltage that is isolated from the properties of an overlying oxygen evolution catalyst or protection layer.
Resumo:
Two series of novel ruthenium bipyridyl dyes incorporating sulfur-donor bidentate ligands with general formula \[Ru(R-bpy)2C2N2S2] and \[Ru(R-bpy)2(S2COEt)]\[NO3] (where R =H, CO2Et, CO2H; C2N2S2 = cyanodithioimidocarbonate and S2COEt = ethyl xanthogenate) have been synthesized and characterized spectroscopically, electrochemically and computationally. The acid derivatives in both series (C2N2S2 3 and S2COEt 6) were used as a photosensitizer in a dye-sensitized solar cell (DSSC) and the incident photo-to-current conversion efficiency (IPCE), overall efficiency (_) and kinetics of the dye/TiO2 system were investigated. It was found that 6 gave a higher efficiency cell than 3 despite the latter dye’s more favorable electronic properties, such as greater absorption range, higher molar extinction coefficient and large degree of delocalization of the HOMO. The transient absorption spectroscopy studies revealed that the recombination kinetics of 3 were unexpectedly fast, which was attributed to the terminal CN on the ligand binding to the TiO2, as evidenced by an absorption study of R =H and CO2Et dyes sensitized on TiO2, and hence leading to a lower efficiency DSSC.
Resumo:
Severe spinal deformity in young children is a formidable challenge for optimal treatment. Standard interventions for adolescents, such as spinal deformity correction and fusion, may not be appropriate for young patients with considerable growth remaining. Alternative surgical options that provide deformity correction and protect the growth remaining in the spine are needed to treat this group of patients 1, 2. One such method is the use of shape memory alloy staples. We report our experience to date using video-assisted thoracoscopic insertion of shape memory alloy staples. A retrospective review was conducted of 13 patients with scoliosis, aged 7 to 13 years, who underwent video-assisted thoracoscopic insertion of shape memory staples. In our experience, video-assisted thoracoscopic insertion of shape memory alloy staples is a safe procedure with no complications noted. It is a reliable method of providing curve stability, however the follow up results to date indicate that the effectiveness of the procedure is greater in younger patients.
Resumo:
This paper presents bonding technology of aluminum alloy by hot-dipping tin. The dissolution curve of copper in molten tin liquid was obtained in the experiment of hot-dipping Sn. Optimal hot-dipping parameter which was suitable for soldering was designed. To elucidate characteristics of interfacial evolution, the microstructure of the coatings, soldered joint were analyzed using optical microscopy, SEM and EDX. The shear strength of soldered joints was tested as high as 39.9Mpa, which is high enough to achieve the requirement of electronic industry.
Resumo:
This study investigated the grain size dependence of mechanical properties and deformation mechanisms of microcrystalline (mc) and nanocrystalline (nc: grain size below 100 nm) Mg-5wt% Al alloys. The Hall-Petch relationship was investigated by both instrumented indentation tests and compression tests. The test results from the indentation tests and compression tests match well with each other. The breakdown of Hall-Petch relationship and the elevated strain rate sensitivity (SRS) of present Mg-5wt% Al alloys when the grain size was reduced below 58nm indicated the more significant role of GB mediated mechanisms in plastic deformation process. However, the relatively smaller SRS values compared to GB sliding and coble creep process suggested the plastic deformation in the current study is still dislocation mediated mechanism dominant.
Resumo:
Pt/graphene nanosheet/SiC based devices are fabricated and characterized and their performances toward hydrogen gas are investigated. The graphene nanosheets are synthesized via the reduction of spray-coated graphite oxide deposited onto SiC substrates. Raman and X-ray photoelectron spectroscopies indicate incomplete reduction of the graphite oxide, resulting in partially oxidized graphene nanosheet layers of less than 10 nm thickness. The effects of interfaces on the nonlinear behavior of the Pt/graphene and graphene/SiC junctions are investigated. Current-voltage measurements of the sensors toward 1% hydrogen in synthetic air gas mixture at various temperatures ranging up to 100. ° C are performed. From the dynamic response, a voltage shift of ∼100 mV is recorded for 1% hydrogen at a constant current bias of 1 mA at 100. °C. © 2010 American Chemical Society.