67 resultados para plasticizers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing interests in the use of starch as biodegradable plastic materials demand, amongst others, accurate information on thermal properties of starch systems particularly in the processing of thermoplastic starch (TPS), where plasticisers (water and glycerol) are added. The specific heat capacity of starch-water-glycerol mixtures was determined within a temperature range of 40-120degreesC. A modulated temperature differential scanning calorimeter (MTDSC) was employed and regression equations were obtained to predict the specific heat capacity as a function of temperature, water and glycerol content for four maize starches of differing amylose content (0 - 85%). Generally, temperature and water content are directly proportional to the specific heat capacity of the systems, but the influence of glycerol content on the thermal property varied according to the starch type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid economic development has occurred during the past few decades in China with the Yangtze River Delta (YRD) area as one of the most progressive areas. The urbanization, industrialization, agricultural and aquaculture activities result in extensive production and application of chemicals. Organohalogen contaminants (OHCs) have been widely used as i.e. pesticides, flame retardants and plasticizers. They are persistent, bioaccumulative and pose a potential threat to ecosystem and human health. However, limited research has been conducted in the YRD with respect to chemicals environmental exposure. The main objective of this thesis is to investigate the contamination level, distribution pattern and sources of OHCs in the YRD. Wildlife from different habitats are used to indicate the environmental pollution situation, and evaluate selected matrices for use in long term biomonitoring to determine the environmental stress the contamination may cause. In addition, a method is developed for dicofol analysis. Moreover, a specific effort is made to introduce statistic power analysis to assist in optimal sampling design. The thesis results show extensive contamination of OHCs in wildlife in the YRD. The occurrences of high concentrations of chlorinated paraffins (CPs) are reported in wildlife, in particular in terrestrial species, (i.e. short-tailed mamushi snake and peregrine falcon). Impurities and byproducts of pentachlorophenol products, i.e. polychlorinated diphenyl ethers (PCDEs) and hydroxylated polychlorinated diphenyl ethers (OH-PCDEs) are identified and reported for the first time in eggs from black-crowned night heron and whiskered tern. High concentrations of octachlorodibenzo-p-dioxin (OCDD) are determined in these samples. The toxic equivalents (TEQs) of polychlorinated dibenzo-p-dioxin (PCDDs) and polychlorinated dibenzofurans (PCDFs) are at mean levels of 300 and 520 pg TEQ g-1lw (WHO2005 TEQ) in eggs from the two bird species, respectively. This is two orders of magnitude higher than European Union (EU) regulation limit in chicken eggs. Also, a novel pattern of polychlorinated biphenyls (PCBs) with octa- to decaCBs, contributing to as much as 20% of total PCBs therein, are reported in birds. The legacy POPs shows a common characteristic with relatively high level of organochlorine pesticides (i.e. DDT, hexacyclohexanes (HCHs) and Mirex), indicating historic applications. In contrast, rather low concentrations are shown of industrial chemicals such as PCBs and polybrominated diphenyl ethers (PBDEs). A refined and improved analytical method is developed to separate dicofol from its major decomposition compound, 4,4’-dichlorobenzophenone. Hence dicofol is possible to assess as such. Statistic power analysis demonstrates that sampling of sedentary species should be consistently spread over a larger area to monitor temporal trends of contaminants in a robust manner. The results presented in this thesis show high CPs and OCDD concentrations in wildlife. The levels and patterns of OHCs in YRD differ from other well studied areas of the world. This is likely due to the extensive production and use of chemicals in the YRD. The results strongly signal the need of research biomonitoring programs that meet the current situation of the YRD. Such programs will contribute to the management of chemicals and environment in YRD, with the potential to grow into the human health sector, and to expand to China as a whole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of ester plasticizers and copolymers on the mechanical properties of the natural biodegradable polymers, poly(3-hydroxybutyrate) [PHB] and poly(lactic acid) [PLA] have been studied after subjecting to melt processing conditions. Ester plasticizers were synthesized from citric, tartaric and maleic acids using various alcohols. A variety of PLA copolymers have also been prepared from poly(ethylene glycol) derivatives using stannous octanoate catalysed ring opening polymerisations of DL-lactide. A novel PLA star copolymer was also prepared from an ethoxylated pentaerythritol. The structures of these copolymers were determined by NMR spectroscopy. The plasticizing effect of the synthesised additives at various concentrations was determined. While certain additives were capable of improving the mechanical properties of PLA, none were effective in PHB. Moreover, it was found that certain combinations of additives exhibited synergistic effects. Possible mechanisms are discussed. Biotic and abiotic degradation studies showed that the plasticizers (esters and copolymers) did not inhibit the biodegradability of PHB or PLA in compost at 60°C. Simple toxicity tests carried out on compost extract and its ability to support the growth of cress seeds was established. PLA was found to be susceptible to limited thermal degradation under melt processing conditions. Conventional phenolic antioxidants showed no significant effect on this process, suggesting that degradation was not predominantly a free radical process. PLA also underwent photo-oxidative degradation with UV light and the process could be accelerated in the presence of a photoactivator such as iron (III) diisononyl dithiocarbamate. The mechanisms for the above processes are discussed. Finally, selected compounds were prepared on a pilot plant scale. Extruded and blown films were prepared containing these additives with conventional polymer processing equipment. The mechanical properties were similar to those obtained with laboratory produced compression moulded films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this research project is to evaluate whether or not pullulan films are suitable to buccal drug delivery of a phosphodiesterase5 (PDE5) inhibitor yonkenafil, which was discovered in our research group and currently is under phase II clinical trial for treatment of erectile dysfunction. Variable formulations of pullulan films were designed and the films were prepared. Mechanical properties of the films, in vitro drug release and polymer dissolution, in vitro drug penetration through porcine esophageal mucosa were investigated. The plasticization effects of solvents, polyols and acids to the films were studied by tensile test, and differential scanning calorimetry, thermogravimetric analysis, fourier transform-infrared, scanning electron microscopy, optical microscopy was applied to analyse the structure and chemical-bonding between pullulan and the additives within the films. Release mathematics models were used in the study of the mechanism of drug releases and polymer dissolutions. Ethanol, menthol, fatty acids, and sodium dodecyl sulphate were employed as penetration enhancers to pretreat the tissue. Various plasticizers and acids were applied into the films and the result showed polyethylene glycol 400 and 600 had the excellent plasticization effect on the drug-free pullulan films, while lactic acid was the best plasticizer for the drug-loaded films. Both PEG400 and lactic acid had a great effect on the drug release from the films in vitro, and all the results indicated that the hydroxyl and carboxyl groups of pullulan and the additives influenced the mechanical properties of the films significantly, and also altered drug release mechanisms. Ethanol shows the greatest enhancing ability on the drug permeation through the porcine esophageal mucosa. A possible mechanism for this is that ethanol interferes with the structure of the lipids in the mucosa, resulting in increased partitioning of the drug into the membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isolation of adjacent zones encountered during oilwell drilling is carried out by Portland-based cement slurries. The slurries are pumped into the annular positions between the well and the casing. Their rheological behavior is a very important component for the cementing process. Nowadays, several alternative materials are used in oilwell cementing, with goal the modification and the improvement of their properties, mainly the increase of the fluidity. And this can be reached by using plasticizers additives able to account for different oilwell conditions, yielding compatible cement slurries and allowing enough time for the complete cementing operation. If the rheological properties of the slurry are properly characterized, the load loss and flow regime can be correctly predicted. However, this experimental characterization is difficult. Rheological models capable of describing the cement slurry behavior must be capable of predicting the slurry cement deformation within reasonable accuracy. The aim of this study was to characterize rheologically the slurries prepared with a especial class of Portland cement, water and plasticizers based on lignosulfonate, melamine and polycarboxylate at temperatures varying from 27°C to 72°C. The tests were carried out according to the practical recommendations of the API RP 10B guidelines. The results revealed a great efficiency and the dispersive power of the polycarboxylate, for all temperatures tested. This additive promoted high fluidity of the slurries, with no sedimentation. High lignosulfonate and melamine concentrations did not reduce the rheological parameters (plastic viscosity and yield stress) of the slurries. It was verified that these additives were not compatible with the type of cement used. The evaluated rheological models were capable of describing the behavior of the slurries only within concentration and temperature ranges specific for each type of additive

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decades, intensive research has been carried out in order to replace oil-based polymers with bio-based polymers due to growing environmental concerns. So far, most of the barrier materials used in food packaging are petroleum-based materials. The purpose of the barrier is to protect the packaged food from oxygen, water vapour, water and fat. The mechanical and barrier properties of coatings based on starch-plasticizer and starch-poly(vinyl alcohol) (PVOH)-plasticizer blends have been studied in the work described in this thesis. The plasticizers used were glycerol, polyethylene glycol and citric acid. In a second step, polyethylene coatings were extruded onto paperboard pre-coated with a starch-PVOH-plasticizer blend. The addition of PVOH to the starch increased the flexibility of the film. Curing of the film led to a decrease in flexibility and an increase in tensile strength. The flexibility of the starch-PVOH films was increased more when glycerol or polyethylene glycol was added than citric acid. The storage modulus of the starch-PVOH films containing citric acid increased substantially at high temperature. It was seen that the addition of polyethylene glycol or citric acid to the starch-PVOH blend resulted in an enrichment of PVOH at the surface of the films. Tensile tests on the films indicated that citric acid acted as a compatibilizer and increased the compatibility of the starch and PVOH in the blend. The addition of citric acid to the coating recipe substantially decreased the water vapour transmission rate through the starch-PVOH coated paperboard, which indicated that citric acid acts as a cross-linker for starch and/or PVOH. The starch-PVOH coatings containing citric acid showed oxygen-barrier properties similar to those of pure PVOH or of a starch-PVOH blend without plasticizer when four coating layers were applied on a paperboard. The oxygen-barrier properties of coatings based on a starch-PVOH blend containing citric acid indicated a cross-linking and increase in compatibility of the starch-PVOH blends. Polyethylene extrusion coating on a pre-coated paperboard resulted in a clear reduction in the oxygen transmission rate for all the pre-coating formulations containing plasticizers. The addition of a plasticizer to the pre-coating reduced the adhesion of polyethylene to pre-coated board. Polyethylene extrusion coating gave a board with a lower oxygen transmission rate when the paperboard was pre-coated with a polyethylene-glycol-containing formulation than with a citric-acid-containing formulation. The addition of polyethylene glycol to pre-coatings indicated an increase in wetting of the pre-coated paperboard by the polyethylene melt, and this may have sealed the small defects in the pre-coating leading to low oxygen transmission rate. The increase in brittleness of starch-PVOH films containing citric acid at a high temperature seemed to have a dominating effect on the barrier properties developed by the extrusion coating process.