982 resultados para plant defense


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowing the structure and distribution of nutrients in plant tissues can clarify some mechanisms of pathogen attack in plants and plant defense against infection, thus helping management strategies. The aim of this study was verify differences in distribution of mineral nutrients in coffee leaf tissues around foliar lesions of bacterial blight of coffee, blister spot, cercospora leaf, phoma leaf spot and coffee leaf rust. Fragments of leaf tissue surrounding the lesions were dehydrated in silica gel, carbon covered and subjected to X-ray microanalysis (MAX). Thirty-three chemical elements were detected in leaf tissue; however, there was variation in potassium and calcium contents surrounding the lesions. The highest potassium content was found in asymptomatic tissues surrounding the lesions, decreasing toward the transition zone and reaching minimum content in symptomatic tissues. The highest calcium content was found in symptomatic tissues, decreasing toward the transition zone and reaching minimum content in asymptomatic tissues. Therefore, MAX can be used to analyze the composition and distribution of nutrients in plant tissues and, if associated with mineral nutrition, it may help understand host-pathogen relationships and plant disease management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Elicitation with chitosan is a tool used to improve the responses of plant defense by inducing secondary metabolism routs. In addition, the adequate application of this elicitor on medicinal plants can promote the increase of major components in the composition of the oil. However, we lack information concerning which are the main physiological processes responsible for the changes in the composition of the oil. Thus, we aimed at evaluating the action of chitosan and determine an ideal concentration for optimizing the production of essential oil in Achillea millefolium L. and the changes in the physiological processes responsible for this increase. The research was conducted in greenhouse of the Plant Physiology sector of the Universidade Federal de Lavras (UFLA) with A. millefolium plants. The treatments consisted of control (water); acetic acid solvent (with no elicitor); and chitosan in the concentrations of 2, 4 and 6 g L -1 . The measurements of growth, gas exchange, enzyme activity of the antioxidant system and phenylalanine ammonia lyase (PAL), in addition to the production and composition of the essential oil. We verified that the application of chitosan promoted decrease in plant growth. However, the concentration of 4 g L -1 of chitosan induced an increase in the content and yield of the essential oil. In the oil, there was predominance of sesquiterpenic compounds, including the major compounds borneol, β-caryophyllene, β-cubebene, α-farnesene and chamazulene. The elicitation with chitosan at 4 g L -1 promoted an increase of the photosynthetic rate, activity of the antioxidant system and of PAL, however, this increase occurred in short-term, only in the first days after elicitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência Florestal - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pimenteira-do-reino (Piper nigrum L.) constitui uma das espécies de pimenta mais amplamente utilizadas no mundo, pertencendo à família Piperaceae, a qual compreende cerca de 1400 espécies distribuídas principalmente no continente americano e sudeste da Ásia, onde esta cultura originou. A pimenteira-do-reino foi introduzida no Brasil no século XVII, e tornou-se uma cultura de importância econômica desde 1933. O Estado do Pará é o principal produto brasileiro de pimenta-do-reino, contudo sua produção vem sendo afetada pela doença fusariose causada pelo fungo Fusarium solani f. sp. piperis. Estudos prévios revelaram a identificação de sequencias de cDNA diferencialmente expressas durante a interação da pimenteira-do-reino com o F. solani f. sp. piperis. Entre elas, uma sequencia de cDNA parcial que codifica para uma proteína transportadora de lipídeos (LTP), a qual é conhecida por seu importante papel na defesa de plantas contra patógenos e insetos. Desta forma, o objetivo principal deste trabalho foi isolar e caracterizar as sequencias de cDNA e genômica de uma LTP de pimenteira-do-reino, denominada PnLTP. O cDNA completo da PnLTP isolado por meio de experimentos de RACE apresentou 621 bp com 32 pb and 235 bp nas regiões não traduzidas 5‘ e 3‘, respectivamente. Este cDNA contem uma ORF de 354 bp codificando uma proteína deduzida de 117 resíduos de aminoácidos que apresentou alta identidade com LTPs de outras espécies vegetais. Análises das sequencias revelou que a PnLTP contem um potencial peptídeo sinal na extremidade amino-terminal e oito resíduos de cisteína preditos por formar quatro pontes de dissulfeto, as quais poderiam contribuir para a estabilidade desta proteína. O alinhamento entre as sequencias de cDNA e genômica revelou a ausência de introns na região codificante do gene PnLTP, o que está de acordo ao encontrado em outros genes de LTPs de plantas. Por último, a PnLTP madura foi expressa em sistema bacteriano. Experimentos adicionais serão realizados com o objetivo de avaliar a habilidade da PnLTP recombinante em inibir o crescimento do F. solani f. sp. piperis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The promotion of sugarcane growth by the endophytic Pantoea agglomerans strain 33.1 was studied under gnotobiotic and greenhouse conditions. The green fluorescent protein (GFP)-tagged strain P. agglomerans 33.1: pNKGFP was monitored in vitro in sugarcane plants by microscopy, reisolation, and quantitative PCR (qPCR). Using qPCR and reisolation 4 and 15 days after inoculation, we observed that GFP-tagged strains reached similar density levels both in the rhizosphere and inside the roots and aerial plant tissues. Microscopic analysis was performed at 5, 10, and 18 days after inoculation. Under greenhouse conditions, P. agglomerans 33.1-inoculated sugarcane plants presented more dry mass 30 days after inoculation. Cross-colonization was confirmed by reisolation of the GFP-tagged strain. These data demonstrate that 33.1:pNKGFP is a superior colonizer of sugarcane due to its ability to colonize a number of different plant parts. The growth promotion observed in colonized plants may be related to the ability of P. agglomerans 33.1 to synthesize indoleacetic acid and solubilize phosphate. Additionally, this strain may trigger chitinase and cellulase production by plant roots, suggesting the induction of a plant defense system. However, levels of indigenous bacterial colonization did not vary between inoculated and noninoculated sugarcane plants under greenhouse conditions, suggesting that the presence of P. agglomerans 33.1 has no effect on these communities. In this study, different techniques were used to monitor 33.1:pNKGFP during sugarcane cross-colonization, and our results suggested that this plant growth promoter could be used with other crops. The interaction between sugarcane and P. agglomerans 33.1 has important benefits that promote the plant's growth and fitness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Common bean, one of the most important legumes for human consumption, may have drastic reduction in yield due to anthracnose, a disease caused by the fungus Colletotrichum lindemuthianum. Rapid induction of the plant defense mechanisms is essential to establish an incompatible interaction with this pathogenic fungus. In this study, we evaluated spatial (leaves, epicotyls and hypocotyls) and temporal (24, 48, 72 and 96 hours after inoculation [HAI]) relative expression (RE) of 12 defense-related transcripts selected from previously developed ESTs libraries, during incompatible interaction between the resistant common bean genotype SEL 1308 and the avirulent anthracnose pathogen race 73, using real time quantitative RT-PCR (RT-qPCR) analysis. All selected transcripts, including the ones coding for pathogenesis-related (PR) proteins (PR1a, PR1b, PR2, and PR16a and PR16b) were differentially regulated upon pathogen inoculation. The expression levels of these transcripts were dependent on the tissue and time post inoculation. This study contributes to a better understanding of the kinetics of induced defenses against a fungal pathogen of common bean and may be used as a base line to study defenses against a broad range of pathogens including bacteria as well as non-host resistance. (C) 2012 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Guapira graciliflora and Neea theifera are taxonomically related species of the tribe Pisoneae. Both species are found in the same environment, the Brazilian Cerrado, and therefore, are subjected to similar selective pressures. These species occur in oligotrophic environments, yet contain high concentrations of nitrogen in their leaves. The present study was carried out to investigate the ecological role of nitrogen in herbivory on these species. The differences in the N content, compositions of secondary N-metabolites, mechanical resistance, and water content between their leaves indicate that these species have different adaptations as defense mechanisms. In both species, their high nitrogen content seems to promote herbivory. The presence of secondary nitrogen metabolites does not prevent the species from suffering intense damage by herbivores on their early leaves. The herbivory rates observed were lower for mature leaves of both species than for young leaves. In G. graciliflora, nutritional content and leaf hardness are the most important variables correlated with reduction of herbivory rates, whereas in N. theifera, N compounds are also correlated with herbivory rates. Despite the differences in the strategies of these two species, they exhibit a similar efficiency of protection against natural enemies because their total herbivory rates are similar. The difference in their N defense allocation may imply benefits for survival under Cerrado conditions. We briefly discuss the oligotrophic habitat conditions of the studied plants and possible advantages of their strategies of N accumulation and metabolic uses. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apple consumption is highly recomended for a healthy diet and is the most important fruit produced in temperate climate regions. Unfortunately, it is also one of the fruit that most ofthen provoks allergy in atopic patients and the only treatment available up to date for these apple allergic patients is the avoidance. Apple allergy is due to the presence of four major classes of allergens: Mal d 1 (PR-10/Bet v 1-like proteins), Mal d 2 (Thaumatine-like proteins), Mal d 3 (Lipid transfer protein) and Mal d 4 (profilin). In this work new advances in the characterization of apple allergen gene families have been reached using a multidisciplinary approach. First of all, a genomic approach was used for the characterization of the allergen gene families of Mal d 1 (task of Chapter 1), Mal d 2 and Mal d 4 (task of Chapter 5). In particular, in Chapter 1 the study of two large contiguos blocks of DNA sequences containing the Mal d 1 gene cluster on LG16 allowed to acquire many new findings on number and orientation of genes in the cluster, their physical distances, their regulatory sequences and the presence of other genes or pseudogenes in this genomic region. Three new members were discovered co-localizing with the other Mal d 1 genes of LG16 suggesting that the complexity of the genetic base of allergenicity will increase with new advances. Many retrotranspon elements were also retrieved in this cluster. Due to the developement of molecular markers on the two sequences, the anchoring of the physical and the genetic map of the region has been successfully achieved. Moreover, in Chapter 5 the existence of other loci for the Thaumatine-like protein family in apple (Mal d 2.03 on LG4 and Mal d 2.02 on LG17) respect the one reported up to now was demonstred for the first time. Also one new locus for profilins (Mal d 4.04) was mapped on LG2, close to the Mal d 4.02 locus, suggesting a cluster organization for this gene family, as is well reported for Mal d 1 family. Secondly, a methodological approach was used to set up an highly specific tool to discriminate and quantify the expression of each Mal d 1 allergen gene (task of Chapter 2). In aprticular, a set of 20 Mal d 1 gene specific primer pairs for the quantitative Real time PCR technique was validated and optimized. As a first application, this tool was used on leaves and fruit tissues of the cultivar Florina in order to identify the Mal d 1 allergen genes that are expressed in different tissues. The differential expression retrieved in this study revealed a tissue-specificity for some Mal d 1 genes: 10/20 Mal d 1 genes were expressed in fruits and, indeed, probably more involved in the allergic reactions; while 17/20 Mal d 1 genes were expressed in leaves challenged with the fungus Venturia inaequalis and therefore probably interesting in the study of the plant defense mechanism. In Chapter 3 the specific expression levels of the 10 Mal d 1 isoallergen genes, found to be expressed in fruits, were studied for the first time in skin and flesh of apples of different genotypes. A complex gene expression profile was obtained due to the high gene-, tissue- and genotype-variability. Despite this, Mal d 1.06A and Mal d 1.07 expression patterns resulted particularly associated with the degree of allergenicity of the different cultivars. They were not the most expressed Mal d 1 genes in apple but here it was hypotized a relevant importance in the determination of allergenicity for both qualitative and quantitative aspects of the Mal d 1 gene expression levels. In Chapter 4 a clear modulation for all the 17 PR-10 genes tested in young leaves of Florina after challenging with the fungus V. inaequalis have been reported but with a peculiar expression profile for each gene. Interestingly, all the Mal d 1 genes resulted up-regulated except Mal d 1.10 that was down-regulated after the challenging with the fungus. The differences in direction, timing and magnitude of induction seem to confirm the hypothesis of a subfunctionalization inside the gene family despite an high sequencce and structure similarity. Moreover, a modulation of PR-10 genes was showed both in compatible (Gala-V. inaequalis) and incompatible (Florina-V. inaequalis) interactions contribute to validate the hypothesis of an indirect role for at least some of these proteins in the induced defense responses. Finally, a certain modulation of PR-10 transcripts retrieved also in leaves treated with water confirm their abilty to respond also to abiotic stress. To conclude, the genomic approach used here allowed to create a comprehensive inventory of all the genes of allergen families, especially in the case of extended gene families like Mal d 1. This knowledge can be considered a basal prerequisite for many further studies. On the other hand, the specific transcriptional approach make it possible to evaluate the Mal d 1 genes behavior on different samples and conditions and therefore, to speculate on their involvement on apple allergenicity process. Considering the double nature of Mal d 1 proteins, as apple allergens and as PR-10 proteins, the gene expression analysis upon the attack of the fungus created the base for unravel the Mal d 1 biological functions. In particular, the knowledge acquired in this work about the PR-10 genes putatively more involved in the specific Malus-V. inaequalis interaction will be helpful, in the future, to drive the apple breeding for hypo-allergenicity genotype without compromise the mechanism of response of the plants to stress conditions. For the future, the survey of the differences in allergenicity among cultivars has to be be thorough including other genotypes and allergic patients in the tests. After this, the allelic diversity analysis with the high and low allergenic cultivars on all the allergen genes, in particular on the ones with transcription levels correlated to allergencity, will provide the genetic background of the low ones. This step from genes to alleles will allow the develop of molecular markers for them that might be used to effectively addressed the apple breeding for hypo-allergenicity. Another important step forward for the study of apple allergens will be the use of a specific proteomic approach since apple allergy is a multifactor-determined disease and only an interdisciplinary and integrated approach can be effective for its prevention and treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Volatiles emitted by herbivore-infested plants are highly attractive to parasitoids and therefore have been proposed to be part of an indirect plant defense strategy. However, this proposed function of the plant-provided signals remains controversial, and it is unclear how specific and reliable the signals are under natural conditions with simultaneous feeding by multiple herbivores. Phloem feeders in particular are assumed to interfere with plant defense responses. Therefore, we investigated how attack by the piercing-sucking cicadellid Euscelidius variegatus influences signaling by maize plants in response to the chewing herbivore Spodoptera littoralis.Results: The parasitoid Cotesia marginiventris strongly preferred volatiles of plants infested with its host S. littoralis. Overall, the volatile emissions induced by S. littoralis and E. variegatus were similar, but higher levels of certain wound-released compounds may have allowed the wasps to specifically recognize plants infested by hosts. Expression levels of defense marker genes and further behavioral bioassays with the parasitoid showed that neither the physiological defense responses nor the attractiveness of S. littoralis infested plants were altered by simultaneous E. variegatus attack.Conclusions: Our findings imply that plant defense responses to herbivory can be more robust than generally assumed and that ensuing volatiles convey specific information about the type of herbivore that is attacking a plant, even in complex situations with multiple herbivores. Hence, the results of this study support the notion that herbivore-induced plant volatiles may be part of a plant's indirect defense stratagem. © 2010 Erb et al; licensee BioMed Central Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. • Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest.