991 resultados para planar antenna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A planar artificial magnetic conductor (AMC) ground plane is proposed as a means to reduce the profile of a highly directive resonant cavity antenna. The structure is formed by a printed microstrip patch antenna and a superimposed partially reflective surface. The antenna profile is reduced to approximately half by virtue of employing the AMC ground plane. A ray theory model is used to qualitatively describe the functioning of the antenna and theoretically predict the existence of quarter wavelength resonant cavities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At large elevation angles away from boresight the performance of planar phased antenna arrays for circularly polarized, CP, signals suffers from significant gain reduction, worsening of the circular polarization purity, increased pointing error and unwanted dominantly specular lobe radiation. The mechanisms governing this performance deterioration and suggestions for possible rectification are for the first time elaborated in this paper. The points raised in this paper are important when CP retrodirective arrays are to be deployed in self-tracking satellite and terrestrial communication systems mounted on mobile platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the design of low profile antennas by using Electromagnetic Band Gap (EBG) structures is introduced. Taking advantage of the fact that they can behave as Perfect Magnetic Conductor (PMC), it is shown that these structures exhibit dual band in-phase reflection at WLAN (Wireless Local Area Network) bands, the 2.4 GHz and 5.2 GHz bands. These structures are applied to PIFA (Planar Inverted-F Antenna) and the results show that it is possible to obtain low profile PIFA's.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

compact multihand planar octagonal-shaped microstrip antenna simultaneously suitable for mobile communication and blue tooth application is presented. The antenna provides sufficient isolation benveen the two operating bands and an area reduction of -29 % with respect to a circular patch operating in the same band

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, there is a visible trend for products/services which demand seamless integration of cellular networks, WLANs and WPANs. This is a strong indication for the inclusion of high speed short range wireless technology in future applications. In this context UWB radio has a significant role to play as an extension/complement to existing cellular/access technology. In the present work, we have investigated two major types of wide band planar antennas: Monopole and Slot. Four novel compact broadband antennas, suitable for poratble applications, are designed and characterized, namely 1. Elliptical monopole 2. Inverted cone monopole 3. Koch fractal slot 4. Wide band slot The performance of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances in each structure. In addition to having compact sized, high efficiency and broad bandwidth antennas, one of the major criterion in the design of impulse-UWB systems have been the transmission of narrow band pulses with minimum distortion. The key challenge is not only to design a broad band antenna with constant and stable gain but to maintain a flat group delay or linear phase response in the frequency domain or excellent transient response in time domain. One of the major contributions of the thesis lies in the analysis of the frequency and time-domain response of the designed UWB antennas to confirm their suitability for portable pulsed-UWB systems. Techniques to avoid narrowband interference by engraving narrow slot resonators on the antenna is also proposed and their effect on a nano-second pulse have been investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge in the transmission of narrow pulses is the radiation characteristics of the antenna. Designing the front ends for UWB systems pose challenges compared to their narrow and wide band counterparts because in addition to having electrically small size, high efficiency and band width, the antenna has to have excellent transient response. The present work deals with the design of four novel antenna designs- Square Monopole, Semi-Elliptic Slot, Step and Linear Tapered slot - and an assay on their suitability in UWB Systems. Multiple resonances in the geometry are matched to UWB by redesigning the ground-patch interfaces. Techniques to avoid narrow band interference is proposed in the antenna level and their effect on a nano second pulse have also been investigated. The thesis proposes design guidelines to design the antenna on laminates of any permittivity and the analyzes are complete with results in the frequency and time domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact dual-band uniplanar antenna for operation in the 2.4/5.2/5.8 GHz WLAN/HIPERLAN2 communication bands is presented. The dual-band antenna is obtained by modifying one of the lateral strips of a slot line, thereby producing two different current paths. The antenna occupies a very small area of 14.5times16.6 mm2 including the ground plane on a substrate having dielectric constant 4.4 and thickness 1.6 mm at 2.2 GHz. The antenna resonates with two bands from 2.2 to 2.52 GHz and from 5 to 10 GHz with good matching, good radiation characteristics and moderate gain

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A planar monopole antenna suitable for broadband wireless communication is designed and developed. With the use of a truncated ground plane, the proposed printed monopole antenna offers nearly 60% 2:1 VSWR bandwidth and good radiation characteristics for the frequencies across the operating band. A parametric study of the antenna is performed based on the optimized design, and a prototype of the antenna suitable for 2.4-GHz WLAN application is presented. The antenna can be easily integrated into wireless circuitry and is convenient for application in laptop computers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design of a new type of corner reflector (CR) antenna and the experimental investigation of its radiation characteristics. The design involves the addition of planar parallel periodic strips to the two sides of a CR antenna. The position, angular orientation, and number of strips have a notable effect on the H-plane radiation characteristics of the antenna. Certain configurations of the new antenna are capable of producing very sharp axial beams with gain on the order of 5 dB over the square corner reflector antenna. A configuration that can provide symmetric twin beams with enhanced gain and reduced half-power beam width (HPBW) is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis Entitled Investigations on Broadband planar Dipole Antennas. An antenna is a device ordinarily used for both transmitting and receiving electromagnetic energy. It is an integral part of the radio communication system and accounts for a good deal of progress that has been made in this field during the last few decades.The effect of flaring the dipole arms is studied in Section 4.1. It is observed that the flaring modifies the impedance characteristics of the dipole. In particular, the change in the reactive part of the impedance with frequency is controlled considerably. This improves the 2:1 VSWR bandwidth of the antenna. The effect of various other design parameters on the impedance bandwidth of the antenna are also studied. The important conclusion drawn is that, there is considerable improvement in the impedance bandwidth of the dipole when ground arm dimensions are larger than the main arm dimensions. Theoretical analysis of various cavity backed antennas are given in Chapter 6. The experimental values agree well with the computation. Also the theory gives a clear inside view and explains the reasons for bandwidth enhancement due to flaring and end-loading of the dipole arms. The percentage bandwidth is determined by calculating the Q of the antenna. Since the approach is for the analysis of microstrip antenna on thick grounded substrate, this method cannot be used to predict the impedance bandwidth of the antennas without cavity backup. Also, the structures analysed are simplified versions of the optimised ones. Specially, the arms overlapping is neglected in the analysis. Also, the antennas with symmetrical arms can only be analysed with this theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the recent progress and rapid increase in the field of communication, the designs of antennas for small mobile terminals with enhanced radiation characteristics are acquiring great importance. Compactness, efficiency, high data rate capacity etc. are the major criteria for the new generation antennas. The challenging task of the microwave scientists and engineers is to design a compact printed radiating structure having broadband behavior along with good efficiency and enhanced gain. Printed antenna technology has received popularity among antenna scientists after the introduction of planar transmission lines in mid-seventies. When we view the antenna through a transmission line concept, the mechanism behind any electromagnetic radiator is quite simple and interesting. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and orientation of the discontinuities control the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non-resonant. This thesis deals with antennas that are developed from a class of transmission lines known as coplanar strip-CPS, a planar analogy of parallel pair transmission line. The specialty of CPS is its symmetric structure compared to other transmission lines, which makes the antenna structures developed from CPS quite simple for design and fabrication. The structural modifications on either metallic strip of CPS results in different antennas. The first part of the thesis discusses a single band and dual band design derived from open ended slot lines which are very much suitable for 2.4 and 5.2 GHz WLAN applications. The second section of the study is vectored into the development of enhanced gain dipoles. A single band dipole and a wide band enhanced gain dipole suitable for 5.2/5.8 GHZ band and imaging applications are developed and discussed. Last part of the thesis discusses the development of directional UWBs. Three different types of ultra-compact UWBs are developed and almost all the frequency domain and time domain analysis of the structures are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A slot line fed planar dipole antenna with a parasitic strip for wide band applications is presented. The presented antenna offers a 2:1 VSWR bandwidth from 1.66 to 2.71 GHz covering the DCS/ PCS/UMTS and IEEE 802.11b/g bands with a gain better than 6.5 dBi. The uniplanar design, simple feeding, and high gain make it a versatile antenna for wireless applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact Co-Planar Waveguide (CPW) fed antenna operating at 2.4GHz with 300MHz 2:1 VSWR bandwidth is presented. Compared to a conventional quarter wavelength CPW fed monopole antenna, the aperture area reduction of the present antenna is 85%. The prototype antenna fabricated on a substrate of εr = 4.4 and thickness 1.6mm is only 22x10x1.6mm3. This much size reduction and impedance matching is achieved by adjusting the signal to ground plane separation and meandering the ground plane of a 50Ω CPW transmission line

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Coplanar waveguide fed compact planar monopole antenna with a modified ground plane is presented. Measured and simulated results reveal that the antenna operates in the Ultra Wide Band with almost constant group delay throughout the band. Developed design equations of the antenna are validated for different substrates. Time domain performance of the antenna is also discussed in order to assess its suitability for impulse radio applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-layer circular planar inverted-F antenna is designed and simulated at the industrial, scientific, and medical (ISM) band of 915 MHz for closed loop deep brain stimulation implant. The ISM band is considered due to the capabilities of small antenna size, high data rate, and long transmission range. In the proposed four-layer antenna, the top three radiating layers are meandered, and a high permittivity substrate and superstrate materials are used to limit the radius and the height of the antenna to 3.5 mm and 2.2 mm, respectively. The bottom layer works as a ground plate. The Roger RO3210 of εr = 10.2 and δ = 0.003 is used as a dielectric substrate and superstrate. The resonance frequency of the proposed antenna is 915 MHz with a bandwidth of 12 MHz at the return loss of -10 dB in free space. The stacked layered structure reduces the antenna size, and the circular shape makes it easily implantable into the human head. The antenna parameters (e.g. 3D gain pattern), SAR value, and electric field distribution within a six layers spherical head model are evaluated by using the finite element method (FEM). The feasibility of the wireless transmission of power, control and command signal to the implant in the human head is also examined. © 2012 IEEE.